Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Biology

Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


A Simple Array Platform For Microrna Analysis And Its Application In Mouse Tissues, Xiaoqing Tang, Jozsef Gal, Xun Zhuang, Wang-Xia Wang, Haining Zhu, Guiliang Tang Oct 2007

A Simple Array Platform For Microrna Analysis And Its Application In Mouse Tissues, Xiaoqing Tang, Jozsef Gal, Xun Zhuang, Wang-Xia Wang, Haining Zhu, Guiliang Tang

Plant and Soil Sciences Faculty Publications

MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression at the post-transcriptional level and play a critical role in many important biological processes. Most miRNAs are conserved between humans and mice, which makes it possible to analyze their expressions with a set of selected array probes. Here, we report a simple array platform that can detect 553 nonredundant miRNAs encompassing the entire set of miRNAs for humans and mice. The platform features carefully selected and designed probes with optimized hybridization parameters. Potential cross-reaction between mature miRNAs and their precursors was investigated. The array platform was …


Human Frataxin: Iron And Ferrochelatase Binding Surface, Krisztina Z. Bencze, Taejin Yoon, CéSar MilláN-Pacheco, Patrick B. Bradley, Nina Pastor, J. A. Cowan, Timothy L. Stemmler May 2007

Human Frataxin: Iron And Ferrochelatase Binding Surface, Krisztina Z. Bencze, Taejin Yoon, CéSar MilláN-Pacheco, Patrick B. Bradley, Nina Pastor, J. A. Cowan, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

The coordinated iron structure and ferrochelatase binding surface of human frataxin have been characterized to provide insight into the protein’s ability to serve as the iron chaperone during heme biosynthesis.


Cost-Effective Engineering Of A Small-Scale Bioreactor, John Tansey, Sadie R. Bartholomew Feb 2007

Cost-Effective Engineering Of A Small-Scale Bioreactor, John Tansey, Sadie R. Bartholomew

Chemistry Faculty Scholarship

Several methods exist for increasing the scale of cell culture in the laboratory. While these methods provide significant increases in biomass, they are often prohibitively expensive for many laboratories. We have engineered a small-scale bioreactor with a novel means of introducing oxygen through the catalytic breakdown of hydrogen peroxide using a manganese oxide catalyst. We have also adapted and modified an existing assay for dissolved oxygen to be compatible with culture conditions. In this system we have been able to culture CHO cells at densities of up to 107 cells/mL without the use of automated feedback systems.


A Proposal For Robust Temperature Compensation Of Circadian Rhythms, Christian I. Hong, Emery D. Conrad, John J. Tyson Jan 2007

A Proposal For Robust Temperature Compensation Of Circadian Rhythms, Christian I. Hong, Emery D. Conrad, John J. Tyson

Dartmouth Scholarship

The internal circadian rhythms of cells and organisms coordinate their physiological properties to the prevailing 24-h cycle of light and dark on earth. The mechanisms generating circadian rhythms have four defining characteristics: they oscillate endogenously with period close to 24 h, entrain to external signals, suffer phase shifts by aberrant pulses of light or temperature, and compensate for changes in temperature over a range of 10°C or more. Most theoretical descriptions of circadian rhythms propose that the underlying mechanism generates a stable limit cycle oscillation (in constant darkness or dim light), because limit cycles quite naturally possess the first three …


Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris Jan 2007

Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for …


The Application Of Electrospray Ionization Coupled To Ultrahigh Resolution Mass Spectrometry For The Molecular Characterization Of Natural Organic Matter, Rachel L. Sleighter, Patrick G. Hatcher Jan 2007

The Application Of Electrospray Ionization Coupled To Ultrahigh Resolution Mass Spectrometry For The Molecular Characterization Of Natural Organic Matter, Rachel L. Sleighter, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Mass spectrometry has recently played a key role in the understanding of natural organic matter (NOM) by providing molecular-level details about its composition. NOM, a complex assemblage of organic molecules present in natural waters and soils/sediments, has the ability to bind and transport anthropogenic materials. An improved understanding of its composition is crucial in order to understand how pollutants interact with NOM and how NOM cycles through global carbon cycles. In the past, low-resolution (> 3000) mass analyzers have offered some insights into the structure of NOM, but emerging ultrahigh resolution (> 200000) techniques such as electrospray ionization (ESI) coupled …


A Model Of Dna Knotting And Linking, Erica Flapan, Dorothy Buck Jan 2007

A Model Of Dna Knotting And Linking, Erica Flapan, Dorothy Buck

Pomona Faculty Publications and Research

We present a model of how DNA knots and links are formed as a result of a single recombination event, or multiple rounds of (processive) recombination events, starting with an unknotted, unlinked, or a (2,m)-torus knot or link substrate. Given these substrates, according to our model all DNA products of a single recombination event or processive recombination fall into a single family of knots and links.