Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou Jan 2006

Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou

Michael Sinensky

The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their …


Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou Jan 2006

Dna Damage Responses In Progeroid Syndromes Arise From Defective Maturation Of Prelamin A, Michael Sinensky, Y. Liu, A. Rusinol, Y. Wang, Y. Zou

Faculty Publications, Biological Sciences

The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their …