Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel Sep 2014

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel

Graduate Theses and Dissertations

This dissertation is devoted to the study of the molecular biology of major tumor suppressors, defined as those that prevent the cellular processes identified as the hallmarks of cancer. Specifically, the major tumor suppressors pRb and STK11 are explored in the context of osteosarcoma and lung cancer, respectively.

RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes ...


Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli Sep 2014

Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli

Graduate Theses and Dissertations

Ovarian cancer is one of the most common causes of gynecological cancer related deaths in women. In 2014, the estimated number of deaths due to ovarian cancer is 14,270 with occurrence of over 22, 240 new cases (National Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html). Despite improvement in treatment strategies, the 5-year survival rate is still below 50% mainly due to chemoresistance and relapse. Amplification of chromosomal region 3q26 is a common characteristic in various epithelial cancers including ovarian cancer. This region harbors various oncogenes including the TGFβ signaling mediators EVI1 and SnoN/SkiL, PKCι and ...


Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz May 2014

Exploration Of Mutations In Erythroid 5-Aminolevulinate Synthase That Lead To Increased Porphyrin Synthesis, Erica Jean Fratz

Graduate Theses and Dissertations

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first committed step of heme biosynthesis in animals, the condensation of glycine and succinyl-CoA yielding 5-aminolevuliante (ALA), CoA, and CO2. Murine erythroid-specific ALAS (mALAS2) variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. Transfection of HeLa cells with expression plasmids for mALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatment of HeLa ...


Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism, Myrna Lillian Ortiz May 2014

Immature Myeloid Cells Promote Tumor Formation Via Non-Suppressive Mechanism, Myrna Lillian Ortiz

Graduate Theses and Dissertations

ABSTRACT

Although there is ample evidence linking chronic inflammation with cancer, the cellular mechanisms involved in early events leading to tumor development remain unclear. Myeloid cells are an intricate part of inflammation. They consist of mature cells represented by macrophages, dendritic cells and granulocytes and a population of Immature Myeloid Cells (IMC), which in healthy individuals are cells in transition to mature cells. There is a substantial expansion of IMC in cancer and many other pathological conditions which is associated with pathologic activation of these cells. As a result, these cells acquire the ability to suppress immune responses and are ...