Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

GSBS Dissertations and Theses

Discipline
Keyword
Publication Year

Articles 1 - 30 of 55

Full-Text Articles in Molecular Biology

Identification Of Deubiquitinating Enzymes That Control The Cell Cycle In Saccharomyces Cerevisiae, Claudine E. Mapa Nov 2018

Identification Of Deubiquitinating Enzymes That Control The Cell Cycle In Saccharomyces Cerevisiae, Claudine E. Mapa

GSBS Dissertations and Theses

A large fraction of the proteome displays cell cycle-dependent expression, which is important for cells to accurately grow and divide. Cyclical protein expression requires protein degradation via the ubiquitin proteasome system (UPS), and several ubiquitin ligases (E3) have established roles in this regulation. Less is understood about the roles of deubiquitinating enzymes (DUB), which antagonize E3 activity. A few DUBs have been shown to interact with and deubiquitinate cell cycle-regulatory E3s and their protein substrates, suggesting DUBs play key roles in cell cycle control. However, in vitro studies and characterization of individual DUB deletion strains in yeast suggest that these ...


Maelstrom Represses Canonical Rna Polymerase Ii Transcription In Drosophila Dual-Strand Pirna Clusters, Timothy H. Chang Apr 2018

Maelstrom Represses Canonical Rna Polymerase Ii Transcription In Drosophila Dual-Strand Pirna Clusters, Timothy H. Chang

GSBS Dissertations and Theses

Transposons constitute much of the animal genome. While many transposons are ancient and inactivated, numerous others are intact and must be actively repressed. Uncontrolled transposons can cause genomic instability through DNA damage or mutations and must be carefully silenced in the germline or risk sterility or mutations that are passed on to offspring.

In Drosophila melanogaster, 23–30 nt long piRNAs direct transposon silencing by serving as guides for Aubergine, Argonaute3, and Piwi, the three fly PIWI proteins. piRNAs derive from piRNA clusters—large heterochromatic DNA loci comprising transposons and transposon fragments. piRNAs are loaded into PIWI proteins via the ...


Transcriptome-Wide Analysis Of Roles For Transfer Rna Modifications In Translational Regulation, Hsin-Jung Chou Dec 2017

Transcriptome-Wide Analysis Of Roles For Transfer Rna Modifications In Translational Regulation, Hsin-Jung Chou

GSBS Dissertations and Theses

Covalent nucleotide modifications in RNAs affect numerous biological processes, and novel functions are continually being revealed even for well-known modifications. Among all RNA species, transfer RNAs (tRNAs) are highly enriched with diverse modifications, which are known to play roles in decoding and tRNA stability, charging, and cellular trafficking. However, studies of tRNA modifications have been limited in a small scale and performed by groups with different methodologies. To systematically compare the functions of a large set of noncoding RNA modifications in translational regulation, I carried out ribosome profiling in 57 budding yeast mutants lacking nonessential genes involved in tRNA modifications ...


Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli Dec 2017

Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli

GSBS Dissertations and Theses

The translation of mRNA into functional proteins is essential for all life. In eukaryotes, aberrant RNAs containing sequence features that stall or severely slow down ribosomes are subject to translation-dependent quality control. Targets include mRNAs encoding a strong secondary structure (No-Go Decay; NGD) or stretches of positively-charged amino acids (Peptide-dependent Translation Arrest/Ribosome Quality Control; PDTA/RQC), mRNAs lacking an in-frame stop codon (Non-Stop Decay; NSD), or defective 18S rRNAs (18S Nonfunctional rRNA Decay; 18S NRD). Previous work from our lab showed that the S. cerevisiae NGD factors DOM34 and HBS1, and PDTA/RQC factor ASC1, all participate in the ...


Development Of Chimeric Cas9 Nucleases For Accurate And Flexible Genome Editing, Mehmet F. Bolukbasi Nov 2017

Development Of Chimeric Cas9 Nucleases For Accurate And Flexible Genome Editing, Mehmet F. Bolukbasi

GSBS Dissertations and Theses

There has been tremendous amount of effort focused on the development and improvement of genome editing applications over the decades. Particularly, the development of programmable nucleases has revolutionized genome editing with regards to their improvements in mutagenesis efficacy and targeting feasibility. Programmable nucleases are competent for a variety of genome editing applications. There is growing interest in employing the programmable nucleases in therapeutic genome editing applications, such as correcting mutations in genetic disorders.

Type II CRISPR-Cas9 bacterial adaptive immunity systems have recently been engineered as RNA-guided programmable nucleases. Native CRISPR-Cas9 nucleases have two stages of sequence-specific target DNA recognition prior ...


The Complex Role Of Sequence And Structure In The Stability And Function Of The Tim Barrel Proteins, Yvonne H. Chan Nov 2017

The Complex Role Of Sequence And Structure In The Stability And Function Of The Tim Barrel Proteins, Yvonne H. Chan

GSBS Dissertations and Theses

Sequence divergence of orthologous proteins enables adaptation to a plethora of environmental stresses and promotes evolution of novel functions. As one of the most common motifs in biology capable of diverse enzymatic functions, the TIM barrel represents an ideal model system for mapping the phenotypic manifestations of protein sequence. Limits on evolution imposed by constraints on sequence and structure were investigated using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Exploration of fitness landscapes of phylogenetically distant orthologs provides a strategy for elucidating the complex interrelationship in the context of a protein fold.

Fitness effects of point mutations in ...


Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer Oct 2017

Regulation Of The Fgf/Erk Signaling Pathway: Roles In Zebrafish Gametogenesis And Embryogenesis, Jennifer M. Maurer

GSBS Dissertations and Theses

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are ...


Single-Molecule Studies Of Replication Kinetics In Response To Dna Damage, Divya Ramalingam Iyer May 2017

Single-Molecule Studies Of Replication Kinetics In Response To Dna Damage, Divya Ramalingam Iyer

GSBS Dissertations and Theses

In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions ...


Three-Dimensional Folding Of Eukaryotic Genomes, Tsung-Han S. Hsieh May 2017

Three-Dimensional Folding Of Eukaryotic Genomes, Tsung-Han S. Hsieh

GSBS Dissertations and Theses

Chromatin packages eukaryotic genomes via a hierarchical series of folding steps, encrypting multiple layers of epigenetic information, which are capable of regulating nuclear transactions in response to complex signals in environment. Besides the 1-dimensinal chromatin landscape such as nucleosome positioning and histone modifications, little is known about the secondary chromatin structures and their functional consequences related to transcriptional regulation and DNA replication. The family of chromosomal conformation capture (3C) assays has revolutionized our understanding of large-scale chromosome folding with the ability to measure relative interaction probability between genomic loci in vivo. However, the suboptimal resolution of the typical 3C techniques ...


Regulation Of The Drosophila Initiator Caspase Dronc Through Ubiquitylation, Hatem E. Kamber Kaya Jan 2017

Regulation Of The Drosophila Initiator Caspase Dronc Through Ubiquitylation, Hatem E. Kamber Kaya

GSBS Dissertations and Theses

Apoptosis is a programmed cell death mechanism that is evolutionary conserved from worms to humans. Apoptosis is mediated by initiator and effector caspases. The initiator caspases carry long pro-domains for their interaction with scaffolding proteins to form a cell-death platform, which is essential for their activation. Activated initiator caspases then cleave effector caspases that execute cell death through cleaving downstream targets. In addition to their apoptotic function, caspases also participate in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian ...


Novel Mechanisms Regulating Dopamine Transporter Endocytic Trafficking: Ack1-Controlled Endocytosis And Retromer-Mediated Recycling, Sijia Wu Jan 2017

Novel Mechanisms Regulating Dopamine Transporter Endocytic Trafficking: Ack1-Controlled Endocytosis And Retromer-Mediated Recycling, Sijia Wu

GSBS Dissertations and Theses

Dopamine transporters (DAT) facilitate high-affinity presynaptic dopamine (DA) reuptake in the central nervous system, and are required to constrain extracellular DA levels and maintain presynaptic DAergic tone. DAT is the primary target for addictive and therapeutic psychostimulants, which require DAT binding to elicit reward. DAT availability at presynaptic terminals ensures its proper function, and is dynamically regulated by endocytic trafficking. My thesis research focused on two fundamental questions: 1) what are the molecular mechanisms that control DAT endocytosis? and 2) what are the mechanism(s) that govern DAT’s post-endocytic fate? Using pharmacological and genetic approaches, I discovered that a ...


Role Of Energy Metabolism In The Thermogenic Gene Program, Minwoo Nam Jan 2017

Role Of Energy Metabolism In The Thermogenic Gene Program, Minwoo Nam

GSBS Dissertations and Theses

In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat. Emerging evidence has suggested that the actions of mitochondria extend beyond this conventional biochemical role. In mouse BAT and cultured brown adipocytes, impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1, a key thermogenic gene, implying a mitochondrial retrograde signaling. However, few have investigated this association in the context of mitochondria-nucleus communication.

Using mice with adipose-specific ablation of LRPPRC, a regulator of respiratory capacity, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to transcriptional and metabolic reprogramming of BAT. Impaired respiratory ...


Mtorc2 Promotes Lipid Storage And Suppresses Thermogenesis In Brown Adipose Tissue In Part Through Akt-Independent Regulation Of Foxo1: A Dissertation, Chien-Min Hung Oct 2016

Mtorc2 Promotes Lipid Storage And Suppresses Thermogenesis In Brown Adipose Tissue In Part Through Akt-Independent Regulation Of Foxo1: A Dissertation, Chien-Min Hung

GSBS Dissertations and Theses

Recent studies suggest adipose tissue plays a critical role in regulating whole body energy homeostasis in both animals and humans. In particular, activating brown adipose tissue (BAT) activity is now appreciated as a potential therapeutic strategy against obesity and metabolic disease. However, the signaling circuits that coordinate nutrient uptake and BAT function are poorly understood. Here, I investigated the role of the nutrient-sensing mTOR signaling pathway in BAT by conditionally deleting Rictor, which encodes an essential component of mTOR Complex 2 (mTORC2) either in brown adipocyte precursors or mature brown adipocytes. In general, inhibiting BAT mTORC2 reduces glucose uptake and ...


Overcoming Toxicity From Transgene Overexpression Through Vector Design In Aav Gene Therapy For Gm2 Gangliosidoses, Diane L. Golebiowski Sep 2016

Overcoming Toxicity From Transgene Overexpression Through Vector Design In Aav Gene Therapy For Gm2 Gangliosidoses, Diane L. Golebiowski

GSBS Dissertations and Theses

GM2 gangliosidoses are a family of lysosomal storage disorders that include both Tay-Sachs and Sandhoff diseases. These disorders result from deficiencies in the lysosomal enzyme β-N-acetylhexosaminidase (HexA). Impairment of HexA leads to accumulation of its substrate, GM2 ganglioside, in cells resulting in cellular dysfunction and death. There is currently no treatment for GM2 gangliosidoses. Patients primarily present with neurological dysfunction and degeneration. Here we developed a central nervous system gene therapy through direct injection that leads to long-term survival in the Sandhoff disease mouse model. We deliver an equal mixture of AAVrh8 vectors that encode for the two subunits (α ...


Functions Of Argonaute Proteins In Self Versus Non-Self Recognition In The C. Elegans Germline: A Dissertation, Meetu Seth Aug 2016

Functions Of Argonaute Proteins In Self Versus Non-Self Recognition In The C. Elegans Germline: A Dissertation, Meetu Seth

GSBS Dissertations and Theses

Organisms employ sophisticated mechanisms to silence foreign nucleic acid, such as viruses and transposons. Evidence exists for pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), but the mechanisms that distinguish “self” from “non-self” are not well understood. Our studies on transgene silencing in C. elegans have uncovered an RNA surveillance system in which the PIWI protein, PRG-1, uses a vast repertoire of piRNAs to recognize foreign transcripts and to initiate epigenetic silencing. Partial base pairing by piRNAs is sufficient to guide PRG-1 targeting. PRG-1 in turn recruits RdRP to synthesize perfectly matching antisense siRNAs (22G-RNAs ...


Investigation Of Rna Binding Protein Pumilio As A Genetic Modifier Of Mutant Chmp2b In Frontotemporal Dementia (Ftd): A Masters Thesis, Xing Du Aug 2016

Investigation Of Rna Binding Protein Pumilio As A Genetic Modifier Of Mutant Chmp2b In Frontotemporal Dementia (Ftd): A Masters Thesis, Xing Du

GSBS Dissertations and Theses

Frontotemporal dementia (FTD) is the second most common early-onset dementia. A rare mutation in CHMP2B gene was found to be associated with FTD linked to chromosome 3. Previous studies have shown that mutant CHMP2B could lead to impaired autophagy pathway and altered RNA metabolism. However, it is still unknown what genes mediate the crosstalk between different pathways affected by mutant CHMP2B. Genetic screens designed to identify genes interacting with mutant CHMP2B represents a key approach in solving the puzzle. Expression of mutant CHMP2B (CHMP2Bintron5) in Drosophila eyes leads to a neurodegenerative phenotype including melanin deposition and disrupted internal structure of ...


Structural Mechanisms Of The Sliding Clamp And Sliding Clamp Loader: Insights Into Disease And Function: A Dissertation, Caroline M. Duffy Jul 2016

Structural Mechanisms Of The Sliding Clamp And Sliding Clamp Loader: Insights Into Disease And Function: A Dissertation, Caroline M. Duffy

GSBS Dissertations and Theses

Chromosomal replication is an essential process in all life. This dissertation highlights regulatory roles for two critical protein complexes at the heart of the replication fork: 1) the sliding clamp, the major polymerase processivity factor, and 2) the sliding clamp loader, a spiral-shaped AAA+ ATPase, which loads the clamp onto DNA.

The clamp is a promiscuous binding protein that interacts with at least 100 binding partners to orchestrate many processes on DNA, but spatiotemporal regulation of these binding interactions is unknown. Remarkably, a recent disease-causing mutant of the sliding clamp showed specific defects in DNA repair pathways. We aimed to ...


Systematic Experimental Determination Of Functional Constraints On Proteins And Adaptive Potential Of Mutations: A Dissertation, Li Jiang May 2016

Systematic Experimental Determination Of Functional Constraints On Proteins And Adaptive Potential Of Mutations: A Dissertation, Li Jiang

GSBS Dissertations and Theses

Sequence-function relationship is a fundamental question for many branches of modern biomedical research. It connects the primary sequence of proteins to the function of proteins and fitness of organisms, holding answers for critical questions such as functional consequences of mutations identified in whole genome sequencing and adaptive potential of fast evolving pathogenic viruses and microbes. Many different approaches have been developed to delineate the genotype-phenotype map for different proteins, but are generally limited by their throughput or precision. To systematically quantify the fitness of large numbers of mutations, I modified a novel high throughput mutational scanning approach (EMPIRIC) to investigate ...


Characterizing The Disorder In Tristetraprolin And Its Contribution To Post-Transcriptional Gene Regulation: A Dissertation, Laura M. Deveau May 2016

Characterizing The Disorder In Tristetraprolin And Its Contribution To Post-Transcriptional Gene Regulation: A Dissertation, Laura M. Deveau

GSBS Dissertations and Theses

RNA-binding proteins (RBPs) are important for a wide variety of biological processes involved in gene regulation. However, the structural and dynamic contributions to their biological activity are poorly understood. The tristetraprolin (TTP) family of RBPs, including TTP, TIS11b and TIS11d, regulate the stability of mRNA transcripts encoding for key cancer-related proteins, such as tumor necrosis factor- and vascular endothelial growth factor. Biophysical studies have shown that the RNA binding domain, consisting of two CCCH zinc fingers (ZFs), is folded in the absence of RNA in TIS11d and TIS11b. In TTP, however, only ZF1 adopts a stable fold, while RNA is ...


Investigating The Architecture And Vesicle Tethering Function Of The Yeast Exocyst Complex: A Dissertation, Margaret R. Heider Jan 2016

Investigating The Architecture And Vesicle Tethering Function Of The Yeast Exocyst Complex: A Dissertation, Margaret R. Heider

GSBS Dissertations and Theses

The exocyst is an evolutionarily conserved, hetero-octameric protein complex proposed to serve as a multi-subunit tethering complex for exocytosis, although it remains poorly understood at the molecular level. The classification of the exocyst as a multisubunit tethering complex (MTC) stems from its known interacting partners, polarized localization at the plasma membrane, and structural homology to other putative MTCs. The presence of 8 subunits begs the questions: why are so many subunits required for vesicle tethering and what are the contributions of each of these subunits to the overall structure of the complex? Additionally, are subunit or subcomplex dynamics a required ...


The Exocyst Subunit Sec6 Interacts With Assembled Exocytic Snare Complexes: A Dissertation, Michelle L. Dubuke Dec 2015

The Exocyst Subunit Sec6 Interacts With Assembled Exocytic Snare Complexes: A Dissertation, Michelle L. Dubuke

GSBS Dissertations and Theses

In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and to the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multi-subunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in other trafficking pathways. Contrary to these other pathways, our lab previously suggested that the exocyst subunit Sec6, a component of the exocytosis-specific tethering complex, inhibited Sec9:Sso1 SNARE complex assembly due to interactions in vitro with the SNARE protein Sec9 (Sivaram et al., 2005).

My goal for ...


Hepatitis C Virus: Structural Insights Into Protease Inhibitor Efficacy And Drug Resistance: A Dissertation, Djade I. Soumana Dec 2015

Hepatitis C Virus: Structural Insights Into Protease Inhibitor Efficacy And Drug Resistance: A Dissertation, Djade I. Soumana

GSBS Dissertations and Theses

The Hepatitis C Virus (HCV) is a global health problem as it afflicts an estimated 170 million people worldwide and is the major cause of viral hepatitis, cirrhosis and liver cancer. HCV is a rapidly evolving virus, with 6 major genotypes and multiple subtypes. Over the past 20 years, HCV therapeutic efforts have focused on identifying the best-in-class direct acting antiviral (DAA) targeting crucial components of the viral lifecycle, The NS3/4A protease is responsible for processing the viral polyprotein, a crucial step in viral maturation, and for cleaving host factors involved in activating immunity. Thus targeting the NS3/4A ...


Single-Molecule Imaging Reveals That Argonaute Re-Shapes The Properties Of Its Nucleic Acid Guides: A Dissertation, William E. Salomon Dec 2015

Single-Molecule Imaging Reveals That Argonaute Re-Shapes The Properties Of Its Nucleic Acid Guides: A Dissertation, William E. Salomon

GSBS Dissertations and Theses

Small RNA silencing pathways regulate development, viral defense, and genomic integrity in all kingdoms of life. An Argonaute (Ago) protein, guided by a tightly bound, small RNA or DNA, lies at the core of these pathways. Argonaute uses its small RNA or DNA to find its target sequences, which it either cleaves or stably binds, acting as a binding scaffold for other proteins. We used Co-localization Single-Molecule Spectroscopy (CoSMoS) to analyze target binding and cleavage by Ago and its guide. We find that both eukaryotic and prokaryotic Argonaute proteins re-shape the fundamental properties of RNA:RNA, RNA:DNA, and DNA ...


Rna Exosome & Chromatin: The Yin & Yang Of Transcription: A Dissertation, Mayuri Rege Nov 2015

Rna Exosome & Chromatin: The Yin & Yang Of Transcription: A Dissertation, Mayuri Rege

GSBS Dissertations and Theses

Eukaryotic genomes can produce two types of transcripts: protein-coding and non-coding RNAs (ncRNAs). Cryptic ncRNA transcripts are bona fide RNA Pol II products that originate from bidirectional promoters, yet they are degraded by the RNA exosome. Such pervasive transcription is prevalent across eukaryotes, yet its regulation and function is poorly understood.

We hypothesized that chromatin architecture at cryptic promoters may regulate ncRNA transcription. Nucleosomes that flank promoters are highly enriched in two histone marks: H3-K56Ac and the variant H2A.Z, which make nucleosomes highly dynamic. These histone modifications are present at a majority of promoters and their stereotypic pattern is ...


Optimizing Rna Library Preparation To Redefine The Translational Status Of 80s Monosomes: A Dissertation, Erin E. Heyer Oct 2015

Optimizing Rna Library Preparation To Redefine The Translational Status Of 80s Monosomes: A Dissertation, Erin E. Heyer

GSBS Dissertations and Theses

Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved ...


Unveiling Molecular Mechanisms Of Pirna Pathway From Small Signals In Big Data: A Dissertation, Wei Wang Oct 2015

Unveiling Molecular Mechanisms Of Pirna Pathway From Small Signals In Big Data: A Dissertation, Wei Wang

GSBS Dissertations and Theses

PIWI-interacting RNAs (piRNA) are a group of 23–35 nucleotide (nt) short RNAs that protect animal gonads from transposon activities. In Drosophila germ line, piRNAs can be categorized into two different categories— primary and secondary piRNAs— based on their origins. Primary piRNAs, generated from transcripts of specific genomic regions called piRNA clusters, which are enriched in transposon fragments that are unlikely to retain transposition activity. The transcription and maturation of primary piRNAs from those cluster transcripts are poorly understood. After being produced, a group of primary piRNAs associates Piwi proteins and directs them to repress transposons at the transcriptional level ...


Pushing The Boundaries Of Bioluminescence Using Synthetic Luciferins: A Dissertation, David M. Mofford Sep 2015

Pushing The Boundaries Of Bioluminescence Using Synthetic Luciferins: A Dissertation, David M. Mofford

GSBS Dissertations and Theses

Fireflies are beetles that generate yellow-green light when their luciferase enzyme activates and oxidizes its substrate, D-luciferin. This bioluminescent reaction is widely used as a sensitive reporter both in vitro and in vivo. However, the light-emitting chemistry is limited by the properties of the small molecule D-luciferin. Our lab has developed a panel of synthetic luciferin analogs that improve on the inherent characteristics of D-luciferin. My thesis work focuses on harnessing these novel substrates to further expand the utility and molecular understanding of firefly bioluminescence.

The first part of my thesis focuses on using synthetic luciferins to improve bioluminescence imaging ...


Atp-Dependent Heterochromatin Remodeling: A Dissertation, Benjamin J. Manning Sep 2015

Atp-Dependent Heterochromatin Remodeling: A Dissertation, Benjamin J. Manning

GSBS Dissertations and Theses

Eukaryotic DNA is incorporated into the nucleoprotein structure of chromatin. This structure is essential for the proper storage, maintenance, regulation, and function of the genomes’ constituent genes and genomic sequences. Importantly, cells generate discrete types of chromatin that impart distinct properties on genomic loci; euchromatin is an open and active compartment of the genome, and heterochromatin is a restricted and inactive compartment. Heterochromatin serves many purposes in vivo, from heritably silencing key gene loci during embryonic development, to preventing aberrant DNA repeat recombination. Despite this generally repressive role, the DNA contained within heterochromatin must still be repaired and replicated, creating ...


Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky Aug 2015

Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky

GSBS Dissertations and Theses

During stress, eukaryotes regulate protein synthesis in part through formation of cytoplasmic, non-membrane-bound complexes called stress granules (SGs). SGs transiently store signaling proteins and stalled translational complexes in response to stress stimuli (e.g. oxidative insult, DNA damage, temperature shifts and ER dysfunction). The functional outcome of SGs is proper translational regulation and signaling, allowing cells to overcome stress.

The fatal motor neuron disease Amyotrophic Lateral Sclerosis (ALS) develops in an age-related manner and is marked by progressive neuronal death, with cytoplasmic protein aggregation, excitotoxicity and increased oxidative stress as major hallmarks. Fused in Sarcoma/Translocated in Liposarcoma (FUS) is ...


A Gene-Centered Method For Mapping 3’Utr-Rbp Interactions: A Dissertation, Alex M. Tamburino Aug 2015

A Gene-Centered Method For Mapping 3’Utr-Rbp Interactions: A Dissertation, Alex M. Tamburino

GSBS Dissertations and Theses

Interactions between 3´ untranslated regions (UTRs) and RNA-binding proteins (RBPs) play critical roles in post-transcriptional gene regulation. Metazoan genomes encode hundreds of RBPs and thousands of 3’ UTRs have been experimentally identified, yet the spectrum of interactions between 3´UTRs and RBPs remains largely unknown. Several methods are available to map these interactions, including protein-centered methods such as RBP immunoprecipitation (RIP) and cross-link immunoprecipitation (CLIP), yeast three-hybrid assays and RNAcompete. However, there is a paucity of RNA-centered approaches for assaying an RNA element of interest against multiple RBPs in a parallel, scalable manner.

Here, I present a strategy for delineating ...