Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann Jan 2017

The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann

Electronic Theses and Dissertations

In the last few decades, concerns over global climate change, energy security, and environmental pollution have been rising. To overcome these challenges, the concept of “-nth generation” biofuels has emerged as a strategy to convert solar radiation into fuels and bulk industrial chemicals for societal use, while decreasing our consumption of nonrenewable energy sources. Nitrogen-fixing cyanobacteria hold a distinct advantage in biofuel production over plants, given their ability to convert sunlight, air (CO2 and N2), and mineralized water to energy-dense carbon molecules, as well as fix atmospheric nitrogen gas into ammonia for metabolism. Engineered cyanobacteria with …


Expression Of Trichoderma Reesei Beta]-Mannanase In Tobacco Chloroplasts And Its Utilization In Lignocellulosic Woody Biomass Hydrolysis, Pankaj M. Agrawal Jan 2011

Expression Of Trichoderma Reesei Beta]-Mannanase In Tobacco Chloroplasts And Its Utilization In Lignocellulosic Woody Biomass Hydrolysis, Pankaj M. Agrawal

Electronic Theses and Dissertations

Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plantbased production of these enzymes on large scale offers a cost effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β- mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed the site-specific …