Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Environmental Controls On The Diversity And Distribution Of Endosymbionts Associated With Phacoides Pectinatus (Bivalvia: Lucinidae) From Shallow Mangrove And Seagrass Sediments, St. Lucie County, Florida, Thomas Walters Doty Dec 2015

Environmental Controls On The Diversity And Distribution Of Endosymbionts Associated With Phacoides Pectinatus (Bivalvia: Lucinidae) From Shallow Mangrove And Seagrass Sediments, St. Lucie County, Florida, Thomas Walters Doty

Masters Theses

Lucinid bivalves are capable of colonizing traditionally inhospitable shallow marine sediments due to metabolic functions of bacterial endosymbionts located within their gills. Because lucinids can often be the dominant sediment infauna, defining their roles in sediment and pore fluid geochemical cycling is necessary to address concerns related to changes in coastal biological diversity and to understanding the sensitivity of threatened coastal ecosystems over time. However, there has been limited research done to understand the diversity and distribution of many lucinid chemosymbiotic systems. Therefore, the goals of this thesis were to evaluate the distribution of Phacoides pectinatus and its endosymbiont communities ...


Demonstration Of A Targeted Proteome Characterization Approach For Examining Specific Metabolic Pathways In Complex Bacterial Systems, Adam Justin Martin Dec 2013

Demonstration Of A Targeted Proteome Characterization Approach For Examining Specific Metabolic Pathways In Complex Bacterial Systems, Adam Justin Martin

Masters Theses

Multiple Reaction Monitoring (MRM) is a powerful tandem mass spectrometry (MS/MS) tool frequently implemented in proteomic studies to provide targeted analysis of proteins and peptides. The selectivity that MRM delivers is so strong that it provides the quadrupole mass spectrometers (QQQ), on which it is commonly employed, with pertinence to proteomic studies that they would otherwise lack for their relatively low resolution. Additionally, this increased level of selectivity is sufficient enough to supplant complicated fractionation techniques, additional dimensions of chromatography, and 24 hour long MS/MS experiments in simplistic biological samples. But there is a deficiency of evidence to ...


Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega May 2013

Application Of Computational Molecular Biophysics To Problems In Bacterial Chemotaxis, Davi Ortega

Doctoral Dissertations

The combination of physics, biology, chemistry, and computer science constitutes the promising field of computational molecular biophysics. This field studies the molecular properties of DNA, protein lipids and biomolecules using computational methods. For this dissertation, I approached four problems involving the chemotaxis pathway, the set of proteins that function as the navigation system of bacteria and lower eukaryotes.

In the first chapter, I used a special-purpose machine for molecular dynamics simulations, Anton, to simulate the signaling domain of the chemoreceptor in different signaling states for a total of 6 microseconds. Among other findings, this study provides enough evidence to propose ...


A Time-And-Space Parallelized Algorithm For The Cable Equation, Chuan Li Aug 2011

A Time-And-Space Parallelized Algorithm For The Cable Equation, Chuan Li

Doctoral Dissertations

Electrical propagation in excitable tissue, such as nerve fibers and heart muscle, is described by a nonlinear diffusion-reaction parabolic partial differential equation for the transmembrane voltage $V(x,t)$, known as the cable equation. This equation involves a highly nonlinear source term, representing the total ionic current across the membrane, governed by a Hodgkin-Huxley type ionic model, and requires the solution of a system of ordinary differential equations. Thus, the model consists of a PDE (in 1-, 2- or 3-dimensions) coupled to a system of ODEs, and it is very expensive to solve, especially in 2 and 3 dimensions.

In ...


Human Decomposition Ecology At The University Of Tennessee Anthropology Research Facility, Franklin Edward Damann Dec 2010

Human Decomposition Ecology At The University Of Tennessee Anthropology Research Facility, Franklin Edward Damann

Doctoral Dissertations

The University of Tennessee Anthropology Research Facility (ARF) is well known for its unique history as a site of human decomposition research in a natural environment. It has been integral to our understanding of the processes of human decomposition. Over the last 30 years 1,089 bodies have decomposed at this 1.28 acre facility, producing a density of 850 corpses per acre of land. This project evaluated the abiotic and biotic characteristics of the soil exposed to various levels of human decomposition in order to determine the effect on the physicochemical properties and the indigenous bacterial communities.

Specifically, 75 ...