Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning Jan 2019

Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning

Undergraduate Honors Theses

Surgery is currently the primary treatment option for aortic valve stenosis (AVS) patients, many of whom are ineligible for surgery and are left untreated. AVS is progression is known to differ between males and females, and an understanding of sex-specific mechanisms of disease progression is imperative in developing accurate treatment options for men and women. The development of a nonsurgical therapy for AVS patients requires a deeper understanding of the molecular and cellular mechanisms of AVS progression. Currently, the role of calcium phosphate nanoparticles detected in the aortic valve during early stages of AVS in influencing disease progression and valvular ...


Elucidating Nucleic Acid Binding Properties Of Polycomb Repressive Complex 2, Richard D. Paucek Jan 2017

Elucidating Nucleic Acid Binding Properties Of Polycomb Repressive Complex 2, Richard D. Paucek

Undergraduate Honors Theses

Polycomb Repressive Complex 2 (PRC2) is a histone methyltransferase that specifically deposits mono-, di-, and tri-methylation marks onto chromatin. This activity triggers epigenetic silencing, a process critical for cell differentiation and maintenance of cellular identity. In mammalian cells, how PRC2 is recruited to target sites is unknown, but it is speculated that RNA, histone modifications, nucleosome architecture, and DNA elements all possess direct or indirect recruitment and regulatory roles. However, the relative binding affinity of PRC2 for these diverse biological substrates remains poorly understood. In the present study, the binding affinity of PRC2 for various RNAs and nucleosomes were tested ...


A Computationally Designed Protein-Ligand Interaction Is Mechanically Robust, William John Van Patten Jan 2016

A Computationally Designed Protein-Ligand Interaction Is Mechanically Robust, William John Van Patten

Undergraduate Honors Theses

Protein-ligand interactions govern essential and ubiquitous biological processes such as immune response and gene regulation. Recently, the first computationally designed ligand-binding protein named DIG10.3 was developed by the Baker lab at the University of Washington. This artificially designed (rather than naturally evolved) ligand binding protein exhibited high affinity and selectivity to its target ligand, Digoxigenin (Dig). Such computationally designed ligand-binders offer promising capabilities in diagnostics and therapeutics for a wide range of diseases. By applying a mechanical force to a single DIG10.3::Digoxigenin interaction through atomic force microscope (AFM)-based single-molecule force spectroscopy (SMFS) we can extract unique ...