Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang Aug 2019

Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang

Theses and Dissertations

The cardiac outflow tract (OFT) is a transient conduit that connects the embryonic heart chambers to the vascular network. Transcription factor Osr1 promotes the proliferation and cell cycle progression of second heart field (SHF), an essential cell population that contribute to the developing OFT. In this study, we investigated the role of Osr1 in OFT development on cellular and molecular levels using a systems biology approach. We observed OFT rotation and elongation defects, as well as double-outlet right ventricle and overriding aorta as a result of SHF-specific deletion of Osr1. Using genetic inducible fate mapping, we showed that Osr1-expressing SHF …


Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong Mar 2019

Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong

USF Tampa Graduate Theses and Dissertations

Trophoblast differentiation and invasion is essential for normal implantation and establishment of the maternal-fetal interface, which allows for proper nutrient exchange and support of the fetus. For this to occur, cytotrophoblasts must undergo an epithelial to mesenchymal transition and differentiate into migratory and invasive extravillous trophoblasts (EVTs) that invade the maternal decidua and myometrium. Trophoblast differentiation, migration and invasion is highly regulated by a complex network of signaling pathways, adhesion molecules and transcription factors and is important for the remodeling of maternal spiral arteries from low flow, high resistance to high flow, low resistance vessels to allow optimal perfusion of …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Molecular Mechanisms Underlying The Early Life Programming Of The Liver, Gurjeev Sohi Jul 2013

Molecular Mechanisms Underlying The Early Life Programming Of The Liver, Gurjeev Sohi

Electronic Thesis and Dissertation Repository

Clinical studies have demonstrated that intrauterine growth restriction (IUGR) offspring, faced with a nutritional mismatch postpartum, have an increased risk of developing the metabolic syndrome. The maternal protein restriction (MPR) rat model has been extensively studied to investigate the adverse effects of a nutritional mismatch in postnatal life of IUGR offspring. Previous studies have demonstrated that MPR leads to impaired function of the liver, an important metabolic organ. However the underlying mechanisms which predispose these offspring to the metabolic syndrome remain elusive. In the following studies, low protein diet during pregnancy and lactation led to IUGR offspring with decreased liver …


Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse May 2010

Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse

Dissertations & Theses (Open Access)

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through …