Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Cell Biology

2019

Institution
Keyword
Publication

Articles 1 - 30 of 47

Full-Text Articles in Molecular Biology

A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner Dec 2019

A Noncanonical Function Of The Telomerase Rna Component In Human Embryonic Stem Cells, Kirsten Ann Brenner

Arts & Sciences Electronic Theses and Dissertations

Telomeres are stretches of TTAGGG nucleotide repeats located at the ends of linear chromosomes that shorten with progressive cell division and prevent genomic instability at the cost of limiting a cell’s capacity to proliferate. This limitation can be overcome by telomerase, a ribonucleoprotein complex that elongates telomeres via reverse-transcription of the template telomerase RNA component (TERC). Recent studies have reported potential functions of TERC outside of its role in telomere maintenance. These noncanonical functions of TERC are however poorly defined, and the molecular mechanisms and biological relevance behind such functions remain elusive. Here, we generated conditional TERC knock-out human ...


Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz Dec 2019

Investigating Biological Mechanisms Of Radiation Resistance In Advanced Stage Cervical Cancer, Fiona Ruiz

Arts & Sciences Electronic Theses and Dissertations

The current standard of care treatment for locally advanced cervical cancer is curative intent pelvic radiation with concurrently administered platinum chemotherapy (CRT). This treatment strategy is effective for many patients, but 33-50% of patients treated with CRT develop disease recurrence. Metastatic and recurrent cervical cancer is an incurable condition, and many of the currently available treatments are associated with significant morbidity and mortality. Identifying these patients upfront is a challenge that clinicians face when developing treatment strategies. Previous studies used to catalog the genomic and transcriptomic landscape of cervical cancer lacked high quality corresponding clinical follow up data for patients ...


Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr Dec 2019

Toward Understanding The Mechanism Of Protein Targeting In The Chloroplast Signal Recognition Particle Pathway, Mercede Furr

Theses and Dissertations

Protein targeting is a vital cellular function. The signal recognition particle (SRP) pathway is a universally conserved targeting system present in the cytosol and used to co-translationally target many proteins to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes. The chloroplast has a homologous SRP system which post-translationally targets light harvesting chlorophyll binding proteins (LHCPs) to the thylakoid membrane for integration. The chloroplast SRP (cpSRP) is a heterodimer with a 54 kDa subunit equivalent to SRP54 in the canonical pathway. In addition, cpSRP contains a novel 43 kDa subunit which is a unique and irreplaceable component. cpSRP43 ...


Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes Dec 2019

Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes

Theses and Dissertations

Natural environments are dynamic, and organisms must sense and respond to changing conditions. One common way organisms deal with stressful environments is through gene expression changes, allowing for stress acclimation and resistance. Variation in stress sensing and signaling can potentially play a large role in how individuals with different genetic backgrounds are more or less resilient to stress. However, the mechanisms underlying how gene expression variation affects organismal fitness is often obscure.

To understand connections between gene expression variation and stress defense phenotypes, we have been exploiting natural variation in Saccharomyces cerevisiae stress responses using a unique phenotype called acquired ...


The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer Dec 2019

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

The lipid and protein composition of the plasma membrane (PM) must be tightly controlled to maintain cellular functionality, despite constant, rapid endocytosis. Because de novo synthesis of proteins and lipids is energetically costly, the cell depends on active recycling to return endocytosed membrane components back to the PM. For most proteins, the mechanisms and pathways of their PM retention remain unknown. The work presented here shows that association with ordered membrane microdomains is fully sufficient for PM recycling and that abrogation of raft partitioning leads to their degradation in lysosomes. These findings support a model wherein ordered membrane domains mediate ...


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical ...


Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao Aug 2019

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Deubiquitinating enzymes (DUBs, also called deubiquitinases) are enzymes that remove monoubiquitin or polyubiquitin chains from target proteins. DUBs have critical roles in cell homeostasis and signal transduction, as they regulate protein degradation, subcellular localization, and protein-protein interaction. Deregulation of DUBs contributes substantially to tumor formation and progression, and therefore targeting DUBs may be a promising cancer therapy strategy. My dissertation focuses on identifying the DUBs of EZH2 and SNAI1, two proteins critical for cancer progression and metastasis, and establishing these DUBs as promising anti-cancer targets.

EZH2, the catalytic component of the PRC2 complex, silences gene transcription by histone methylation. High ...


The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui Aug 2019

The Distinct Expressions Of Integrins Αdβ2 And Αmβ2 Differently Regulate Macrophage Migration In 3d Matrix In Vitro And In Tissue During Inflammation, Kui Cui

Electronic Theses and Dissertations

Chronic inflammation is an essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration and accumulation of macrophages in damaged tissues. Macrophage motility is highly regulated by adhesive receptors, integrins. Namely, intermediate expression of integrin supports macrophage migration, while a high integrin density inhibits it. Our studies are focused on evaluation of the contribution of related integrins αDβ2 and αMβ2 to macrophage migration and development of chronic inflammation.

We found that integrin αDβ2 is upregulated on M1-macrophages in vitro and ...


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point ...


Targeting Pten For Therapy In Cancer And Ptenopathies, Emily Palumbo Jul 2019

Targeting Pten For Therapy In Cancer And Ptenopathies, Emily Palumbo

Graduate Theses and Dissertations

PTEN, a dual protein and lipid phosphatase, regulates a myriad of cellular functions including PI3K pathway signaling, cell migration, proliferation, invasion and apoptosis. PTEN mutations often lead to multiple malignancies, including prostate, breast, endometrial, skin and brain cancers, associated with hyperactive PI3K signaling. PTEN mutations have also been associated with a variety of other diseases, classified as PTEN Hamartoma Tumor Syndromes (PHTS). In addition, compromised function or reduced expression of PTEN due to non-genomic mechanisms are associated with many types of hyperproliferative diseases, such as restenosis and neoplastic diseases, including melanoma, lung, breast, prostate and colon cancers. Although PI3K pathway ...


Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali Jul 2019

Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali

Mechanical & Aerospace Engineering Theses & Dissertations

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin related diseases and cancers. Here, I devised methods to determine the endogenous intercellular force within cell pairs as well as in large epithelial islands. I further ascertained the factors that affect the level of inter-cellular tension.

Experiments with pairs of epithelial cells exogenously expressing ...


The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller Jul 2019

The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller

Biological Sciences Theses & Dissertations

Foxp3+ regulatory T cells (TR) are an immunosuppressive subset of CD4+ T cells that maintain homeostasis of the immune system. They are sustained by the interaction between the Major Histocompatibility Complex (MHC) molecules present on antigen presenting dendritic cells and the T Cell Receptor (TCR) expressed on TR cells that is specific for the MHC loaded with an antigenic peptide. Here, we show that in addition to MHC/TCR interaction, Connexin-43 (Cx43) expression by dendritic cells is required to maintain the TR cell population. CD11c+ dendritic cells represent a major subset of antigen presenting cells. Using flow cytometry ...


Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea Jun 2019

Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea

Graduate Theses and Dissertations

The posttranslational modification ubiquitination is major regulatory mechanism used throughout cell signaling pathways such as cell cycle regulation and the DNA damage response. As such, the E3 ligases and their deubiquitinating enzyme counterparts, which conjugate and deconjugate ubiquitin to and from protein substrates respectively, must be tightly regulated to prevent aberrant cellular behaviors that could lead to diseases such as cancer.

Of the five families of deubiquitinating enzymes, the Ovarian Tumor Domain (OTU) family is fairly unique and under-studied; many of its family members hold a linkage specificity to certain ubiquitin chains and a number of them have been implicated ...


Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond Iii May 2019

Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond Iii

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

The development and advancement of prostate cancer is supported by a plethora of genetic and proteomic abnormalities, including events of post-translational modifications. The protein arginine methyltransferase 5 (PRMT5) enzyme regulates epigenetic events of histone modifications and protein post-translational modifications within protein signaling pathways. PRMT5 functions by catalyzing the symmetric dimethylation of terminal arginine residues on target protein substrates. Under abnormal conditions of overexpression and upregulation, PRMT5 methyltransferase activity constitutively drives the growth and proliferation of dysregulated cells. Overexpression or upregulation of PRMT5 correlates with disease progression as observed among numerous cancer types, including breast, colorectal, leukemia, lung, melanoma and prostate ...


The Role Of Fos And Junb In The Reprogramming Of Acute Myeloid Leukemia Cells, Kayla Bendinelli May 2019

The Role Of Fos And Junb In The Reprogramming Of Acute Myeloid Leukemia Cells, Kayla Bendinelli

Student Honors Theses By Year

Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults and while it has a high remission rate, relapse with therapy resistance is common, indicating the need for more targeted and effective therapies. It is possible to reprogram AML cells in culture to undergo cell cycle arrest, differentiation into “normal” macrophage-like cells, and apoptosis using phorbol 12-myristate 13-acetate (PMA), a diacyl glycerol (DAG) mimic. While this is effective in “curing” leukemia in culture, PMA is too toxic to serve as a therapy in AML patients. During these PMA-induced changes, approximately 1250 genes change in expression. The goal ...


Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods May 2019

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods

MSU Graduate Theses

Mucopolysaccharidosis type I (MPS I) is a rare, autosomal recessive disorder caused by the deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Absence of IDUA results in the accumulation of dermatan and heparin sulfate and ultimately causes multi-system dysfunction. The most severe form of MPS I is Hurlers syndrome, a rapidly progressive disorder that, if left untreated, is fatal. Current treatment options for diagnosed individuals includes hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). These treatments are able to ameliorate the majority of symptoms with the exception of the bone phenotype. This investigation aimed to further characterize the bone ...


Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor May 2019

Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor

MSU Graduate Theses

Uncoating is a poorly understood yet required step of HIV-1 replication that is defined as the disassembly of the viral capsid structure. The goal of this project is to characterize uncoating in C20 microglial cells. These cells are a natural target of HIV-1 that are infected to establish latent viral reservoirs and HIV-associated neurological disorders. A stable C20 cell line that expresses TRIM-CypA was established to study the kinetics of uncoating with the CsA washout assay. The expression of TRIM-CypA was confirmed by western blot and the functionality of the protein was confirmed by a viral infectivity assay. Using this ...


The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis May 2019

The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis

Arts & Sciences Electronic Theses and Dissertations

Mature cells can reprogram into a proliferative, progenitor-like state to repair tissue following injury and inflammation. Differentiated cells in diverse tissues can become proliferative via a dedicated, evolutionarily conserved program we termed paligenosis. We detailed how paligenosis occurs, in both gastric chief and pancreatic acinar cells, in a step-wise manner that involves: 1) autodegradation of mature cell components; 2) re-expression of progenitor genes; 3) re-entry into the cell cycle. This process is governed by mTORC1, a fundamental cellular energy sensor and regulator of protein translation. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase ...


Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques May 2019

Anti-Crispr Vs. Crispr: The Evolutionary Arms Race Between Microorganisms, Rachael M. St. Jacques

Masters Theses, 2010-2019

CRISPR arrays are a defense mechanism employed by bacteria against viral invaders. Cas proteins do the work in detecting, capturing, and integrating the viral DNA into the CRISPR array (Barrangou et al., 2007). Anti-CRISPR proteins are produced by phages, viruses that infect bacteria, to stop the bacterial host’s CRISPR-Cas complex from interrupting the phage life cycle (Bondy-Denomy, et al., 2015).

SEA-PHAGES is a course-based bacteriophage research network composed of 120 colleges and known at James Madison University as Viral Discovery. JMU uses the unsequenced Streptomyces griseus ATCC10137 as a host for bacteriophage discovery and propagation, and in this study ...


Spatial Reorganization Of Histone-Like Nucleoid Structuring Proteins Caused By Silver Nanoparticles, Meaad Alqahtany May 2019

Spatial Reorganization Of Histone-Like Nucleoid Structuring Proteins Caused By Silver Nanoparticles, Meaad Alqahtany

Theses and Dissertations

Silver nanoparticles (AgNPs) and ions (Ag+) can be the new generation of antibiotics due to their antimicrobial effects against bacteria and other microbes. Many studies have shown that AgNPs and suppress the growth of bacteria and damage the cell walls of the microbes; therefore, treating bacterial cells with AgNPs may be a promising method to terminate multi-resistant bacteria. In this work, the effect of AgNPs with two different surface coatings on the spatial reorganization of histone-like nucleoid structuring (H-NS) proteins in Escherichia coli bacteria was investigated using quantitative super-resolution fluorescence microscopy to understand the toxicity and antimicrobial mechanism of AgNPs ...


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific stress ...


Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter May 2019

Hormone Signaling, Gene Expression, And Mitochondrial Hormone Receptor Expression In Avian Muscle (Cells), Kentu Rushadd Lassiter

Theses and Dissertations

Mitochondria are vital to the proper growth and function of muscle cells since they’re responsible for the majority of ATP production used for cellular energy. Previous studies have investigated how differences in mitochondrial function affects feed efficiency (FE) in broilers phenotyped for High and Low FE. Low FE broilers have been shown to have increased levels of reactive oxygen species (ROS), thus contributing to higher levels of oxidative stress and damage seen in these birds. Global gene and protein expression studies conducted on breast muscle of the High FE and Low FE phenotypes have suggested that differences in mitochondrial ...


The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy May 2019

The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy

Dissertations, Theses, and Capstone Projects

Cellular homeostasis is achieved by the dynamic flux in gene expression. Post-transcriptional regulation of coding and non-coding RNA offers a fast method of adapting to a changing cellular environment, including deadenylation, microRNA (miRNA) pathway, and alternative polyadenylation (APA). In this dissertation, I explored some of the mechanisms involved in the post-transcriptional regulation of gene expression. The main hypothesis in these studies is that a single APA event after DNA damage is governed by specific conditions and factors outside of current known regulators of APA, and that the resultant transcript has a role in the DNA damage response (DDR). My aims ...


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a ...


Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri Apr 2019

Novel Insights Into The Multifaceted Roles Of Blm In The Maintenance Of Genome Stability, Vivek M. Shastri

Graduate Theses and Dissertations

Genomic instability is a hallmark of disorders in which DNA replication and repair genes are dysfunctional. The tumor suppressor RECQ helicase gene BLM encodes the 3’-5’ DNA Bloom syndrome helicase BLM, which plays important roles during DNA replication, recombination and repair to maintain genome stability. Mutations within BLM cause Bloom syndrome, an autosomal recessive disorder characterized by growth defects, immunodeficiency, >10-fold higher sister chromatid exchange compared to normal cells, and an increased predisposition to a wide range of cancers from an early age. Single nucleotide polymorphisms or SNPs in BLM have been reported to be associated with susceptibility to ...


Conserved Glycine Residues Control Transient Helicity And Disorder In The Cold Regulated Protein, Cor15a, Oluwakemi Sowemimo Mar 2019

Conserved Glycine Residues Control Transient Helicity And Disorder In The Cold Regulated Protein, Cor15a, Oluwakemi Sowemimo

Graduate Theses and Dissertations

COR15A is a cold regulated disordered protein from Arabidopsis thaliana that contributes to freezing tolerance in plants by protecting membranes. It belongs to the (LEA) Late Embryogenesis Abundant group of proteins that accumulate during the later stage of seed development and are expressed in various parts of the plant. During freezing-induced cellular dehydration, COR15A transitions from a disordered structure to a mostly α-helical structure that binds and stabilizes chloroplast membranes when cells dehydrate due to freezing. We hypothesize that increasing the transient α-helicity of COR15A under normal conditions will increase its ability to bind and protect chloroplast membranes when cells ...


Biochemical And Proteomic Approaches To Determine The Impact Level Of Each Step Of The Supply Chain On Tomato Fruit Quality, Robert T. Madden Mar 2019

Biochemical And Proteomic Approaches To Determine The Impact Level Of Each Step Of The Supply Chain On Tomato Fruit Quality, Robert T. Madden

Graduate Theses and Dissertations

Fresh fruits and vegetables (FFVs) are the most frequently wasted foods because of their perishability and handling requirements. However, there is a lack of information on how much each step of the supply chain impacts FFVs quality, particularly on tomatoes, and what measures need to be taken for an immediate and effective impact on waste reduction. There is also no information on how the supply chain affects the proteome of the tomato and what proteins are differentially regulated by the most impactful steps of the supply chain. The objectives of the work presented on this thesis were to evaluate the ...


The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral Mar 2019

The Drosophila Neuroblasts: A Model System For Human Ribosomopathies, Sonu Shrestha Baral

LSU Doctoral Dissertations

This dissertation describes the use of Drosophila neuroblasts (NBs) to model human ribosomopathies; the overall goal is to understand why specific stem cell and progenitor cell populations are the primary targets in nucleolar stress as seen in the ribosomopathies. Chapter 1 provides an overview of relevant literature. Chapter 2 describes nucleolar stress in Drosophila neuroblasts as a model for human ribosomopathies. For this, we induce nucleolar stress by using the UAS-GAL4 system to express RNAi that depletes Nopp140 transcripts, and we also employ homozygous, CRISPR-Cas9-generated Nopp140 gene disruptions with a systemic null phenotype (Nopp140-/-). Embryonic lethality was observed under RNAi ...


Integrated Molecular Characterization Of Lung Adenocarcinoma With Implications For Immunotherapy, Nicholas T. Gimbrone Mar 2019

Integrated Molecular Characterization Of Lung Adenocarcinoma With Implications For Immunotherapy, Nicholas T. Gimbrone

Graduate Theses and Dissertations

This dissertation covers a variety of the genetic and molecular abnormalities of lung adenocarcinoma with an emphasis on STK11 loss and its implications on immunotherapy response. Given that lung cancer is the leading cancer killer, novel therapies are in great demand. In particular, immunotherapy has shown some of the most promise in the last decade but remains limited due to nearly 80% of patients not significantly responding. This dissertation aims to molecularly characterize lung adenocarcinoma while attempting to explain the reason why patients with STK11 loss do not respond to immunotherapy.

In the first chapter we discuss the relationship between ...


Role Of The Nuclear Receptor Pparγ In Clear Cell Renal And Bladder Urotheial Carcinoma, Danielle Sanchez Jan 2019

Role Of The Nuclear Receptor Pparγ In Clear Cell Renal And Bladder Urotheial Carcinoma, Danielle Sanchez

Publicly Accessible Penn Dissertations

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) has a well-characterized role in the developmental process of adipogenesis and transcriptional regulation of lipid metabolism. However, its expression patterns and functions in various cancer subtypes are less understood. My studies investigate the role of PPARγ in two distinct cancers of the urinary tract: clear cell renal cell carcinoma (ccRCC) and bladder urothelial carcinoma (UC). In ccRCC, I hypothesized that PPARγ activity contributes to the aberrant lipid accumulation phenotype characteristic of this disease, thereby promoting tumor progression. Through ChIP-seq, I demonstrated that PPARγ and its heterodimeric DNA binding partner retinoid X receptor ...