Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Cell Biology

2015

Institution
Keyword
Publication

Articles 1 - 30 of 43

Full-Text Articles in Molecular Biology

Hd2d Is A Regulator Of Abscisic Acid Responses In Arabidopsis, Joshua A. Farhi Dec 2015

Hd2d Is A Regulator Of Abscisic Acid Responses In Arabidopsis, Joshua A. Farhi

Electronic Thesis and Dissertation Repository

Histone deacetylases have important roles in development and stress response in plants. To further investigate their function, the HD2D gene, of the plant specific HD2 family, was studied. An hd2d-1 mutant and two HD2D overexpression lines were used in this study. Germination was delayed in hd2d-1 and HD2D overexpression seeds only in the presence of ABA. HD2D was found to positively regulate the expression of members of the ABA-response pathway (ABI1, ABI5, and RD29A) leading to increased resistance to drought and salinity treatments. Furthermore, HD2D expression delayed flowering by positively regulating FLC expression. Using bimolecular fluorescence complementation, the HD2D protein …


Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner Dec 2015

Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner

Dissertations & Theses (Open Access)

The thymus maintains T cell receptor (TCR) repertoire diversity through perpetual release of self-MHC restricted naive T cells. However, thymus involution during the aging process reduces naïve T cell output, leading to defective immune responsiveness to newly encountered antigens. We have found that early thymus involution precipitates the age-associated shift favoring memory T cell dominancy in young control mice. Furthermore, we have shown that age-related thymus involution is prevented in mice expressing a keratin 5 promoter-driven Cyclin D1 (K5.D1) transgene in thymic epithelial cells (TECs). Thymopoiesis occurs normally in K5.D1 transgenic thymi and sustains T cell output to prevent the …


Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao Dec 2015

Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao

Dissertations & Theses (Open Access)

Background: Calcification occurs often in the atherosclerotic lesions of patients with coronary heart disease and animals with hypercholesterolemia, such as apolipoprotein-E deficient (ApoE-/-) mice. However, the mechanism(s) underlying the development of calcification in atherosclerosis remains unclear. ApoE acts as a lipid transporter, but also has been recognized as a potential regulator of osteogenesis. Little information is available as to whether ApoE has any direct impact on osteogenesis and calcification in vascular smooth muscle cells (VSMC). Several signal transduction pathways play a role in regulation of calcification, including the Wnt/β-catenin system and potentially GTAP, an ubiquitin-conjugating enzyme responsible for protein …


Leptin Regulates The Expression Of Autophagy-Related Genes In Chickens, Peter Olawale Ishola Dec 2015

Leptin Regulates The Expression Of Autophagy-Related Genes In Chickens, Peter Olawale Ishola

Graduate Theses and Dissertations

Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved from yeast to human, plays a key role in recycling cellular constituents, including damaged organelles. It also plays a pivotal role in the adaptation of cells to a plethora of distinct stressors including starvation. Autophagy has been extensively studied in mammals and yeast, but little is known in avian species. Thus, the major objective of the present study was to determine the effects of leptin on autophagy-related genes in chicken hypothalamus, muscle and liver. Leptin is an adipocytokine that is mostly produced by white adipose cells in mammals (as …


Transcriptomics Of Chicken Primordial Germ Cells, Nhung Thi Nguyen Dec 2015

Transcriptomics Of Chicken Primordial Germ Cells, Nhung Thi Nguyen

Graduate Theses and Dissertations

Chicken primordial germ cells (PGCs) are derived from extraembryonic tissue of the embryo and first appear at stage X of development. They enter the bloodstream and migrate to the genital ridge, unite with somatic tissue to form a developing gonad, and then differentiate to sperm or ova (Fujimoto et al., 1976). Understanding molecular features of both male and female PGCs not only clarify the differentiation mechanism of such cells toward different germ lines, but will also help in selecting for highly productive types of commercial chicken. Most previous studies focused on the location of PGCs (Eyal-Giladi et al., 1981; Swift …


Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff Nov 2015

Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff

USF Tampa Graduate Theses and Dissertations

PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. …


Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl Oct 2015

Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl

USF Tampa Graduate Theses and Dissertations

Diabetes has afflicted 8.3%, approximately 25.8 million, of the United States population and is the seventh leading cause of death [1]. Type I diabetes (T1D) accounts for 5 to 10% of all diagnosed cases of diabetes in the United States [2]. If present trends continue, the rate of T1D incidence among children under the age of 14 will increase by 3% globally [3]. T1D is an autoimmune disorder in which the β-cells of the pancreatic islets are destroyed, leading to high blood sugar. Hyperglycemia and loss of immunological tolerance to self-antigens are common associations of T1D [4]. Periodontal disease impacts …


Dna Repair Deficiency In Huntington's Disease Fibroblasts And Induced Pluripotent Stem Cells, Peter Anthony Mollica Oct 2015

Dna Repair Deficiency In Huntington's Disease Fibroblasts And Induced Pluripotent Stem Cells, Peter Anthony Mollica

Biological Sciences Theses & Dissertations

Mutant huntingtin protein (mhtt)– the protein responsible for cellular dysfunction in Huntington’s disease (HD) –is a product of an expanded trinucleotide repeat (TNR) cytosine-adenine-guanine (CAG) sequence in exon 1 of the huntingtin (HTT) gene. The pathology of HD has been extensively researched; however, the mechanism by which the disease-causing TNR expansions occur in somatic cells remains elusive. Interestingly, HD has often been referred to a ‘DNA repair disease’, even though DNA repair dysfunction in situ has not been identified. We hypothesized that presence of the mhtt protein affects the expression of DNA repair genes used to address DNA repair, ultimately …


Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen Sep 2015

Biophysical Properties Of Cellular Membranes In Gram-Positive Bacterial Pathogens And Their Impact On Major Physiological Attributes And Virulence Determinants, Suranjana Sen

Theses and Dissertations

The cytoplasmic membrane of bacterial cells, forming an essential barrier from the surroundings, is a critical component of cellular physiology ensuring proper survival and maintenance of major cellular functions. The integrity of the membrane is an important feature that plays an essential role in the transport of solutes and nutrients through active and passive pathways, functions of membrane-associated proteins, electron transport and ATP synthesis, maintaining turgor pressure and combating environmental stresses, and thus is a crucial factor of a majority of cellular adaptations. The various biophysical properties affecting the integrity of this membrane are mainly determined by the composition and …


Function Of Long Noncoding Rnas In Breast Cancer, Edward J. Richards Sep 2015

Function Of Long Noncoding Rnas In Breast Cancer, Edward J. Richards

USF Tampa Graduate Theses and Dissertations

Breast cancer is a disease that will be diagnosed in about 1 in 10 women throughout their lifetime. The majority of breast cancers are originated from the epithelial cells of the mammary ducts, and this occurrence can be due to several factors including hereditary and acquired mutation. There are several major breast cancer subtypes, including estrogen receptor-α (ERα)-positive, HER2-enriched and triple-negative (TNBC). Patients diagnosed with ER+ tumors are generally treated with estrogen blockers (e.g., tamoxifen, letrozole and fulvestrant). Patients with HER2+ tumors are commonly administered with drugs that block HER2 signaling (e.g., trastuzumab) or inhibit HER2’s tyrosine kinase activity (e.g., …


Characterizing The C-Terminal Region Of Human Adenovirus E1a: An Undiscovered Country, Michael J. Cohen Sep 2015

Characterizing The C-Terminal Region Of Human Adenovirus E1a: An Undiscovered Country, Michael J. Cohen

Electronic Thesis and Dissertation Repository

Human Adenovirus (HAdV) E1A is the first protein expressed during viral infection. The primary function of E1A is to reprogram the cell for viral replication, but it is additionally capable of transforming primary rodent cells in co-operation with other oncogenes such as HAdV E1B. Despite extensive study, little is known about the function and cellular targets of the C-terminal region of E1A. Importantly, this region is required for the transforming ability of E1A with E1B, but can also suppress transformation with Ras. Previous studies showed that interaction with the C-terminal Binding Protein (CtBP) plays a role in both functions described …


Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park Aug 2015

Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park

Electronic Thesis and Dissertation Repository

Neurons within different brain regions have varying levels of vulnerability to external stress and therefore respond differently to injury. A potential reason to explain this may lie within a key lipid class of the cell’s plasma membrane called gangliosides. These glycosphingolipid species have been shown to play various roles in the maintenance of neuronal viability. The purpose of this study is to use electrospray ionization mass spectrometry (ESI-MS) technique and immunohistochemistry to evaluate the temporal changes in the expression profiles of various ganglioside species during the course of neurodegeneration in rat primary cortical neurons exposed to glutamate toxicity. Primary embryonic …


Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi Aug 2015

Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi

Doctoral Dissertations

Waterlogging stress leads to a crisis in energy metabolism and the accumulation of toxic metabolites due to the hypoxic and/or anoxic environment associated with this condition. To respond and adapt to this situation, higher plants employ an integrated genetic program that leads to the induction of anaerobic response polypeptide genes that encode metabolic and signaling proteins involved in altering metabolic flow and other adaptive responses. The study presented here shows that the Arabidopsis thaliana calmodulin-like protein CML38 is calcium sensor protein that serves as a member of the core anaerobic response gene family and is involved in modulating the survival …


Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler Aug 2015

Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler

Dissertations & Theses (Open Access)

Histone H3K4 methylation is conserved across species and is associated with active transcription. By using Saccharomyces cerevisiae, we found histone H3K4 methylation has a previously unknown role in regulating mitosis through the Spindle Assembly Checkpoint. The Spindle Assembly Checkpoint ensures duplicated chromosomes are segregated correctly and each daughter cell receives one full copy of the genome. Our data show SET1 mutants and histone H3K4 mutants display a resistance to the mitotic poison, benomyl. Moreover methylated histone H3 directly binds to Spindle Assembly Checkpoint proteins Bub3 and Mad2 as well as the activator of the Anaphase Promoting Complex (APC) protein …


Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo Aug 2015

Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo

Dissertations & Theses (Open Access)

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine that plays a role in various cellular processes such as proliferation, differentiation (mainly through NF-κB signaling) and death (via apoptosis signaling). Recently, linear ubiquitination by LUBAC (linear ubiquitin chain assembly complex) was reported to have a regulatory function in TNF-α mediated NF-κB activation. Although LUBAC is suggested to control not only NF-kB signaling but also the apoptosis pathway, the precise mechanism of apoptosis regulation remains unknown. Moreover, NF-κB and apoptosis pathways have opposed but fundamental functions for various cellular processes. Although these two pathways actively interplay to balance the death and survival, the …


Comparison Of Different Modulators That Affect Macrophage Activation In Vitro, Alda Alexa Díaz Pérez Jul 2015

Comparison Of Different Modulators That Affect Macrophage Activation In Vitro, Alda Alexa Díaz Pérez

Graduate Theses and Dissertations

Inflammation is known as a mechanism to regulate and control infections as well as promote tissue repair. Macrophages (Mф) are known to be a major cell type in the initiation, sustainability and resolution of inflammation. Moreover, Mф are essential for the remodeling process that is also known as the wound healing response. The objective of this research was to compare five modulators (acetylsalicylic acid (ASA), dexamethasone (DEX), prostaglandin E2 (PGE2), iloprost, and resolvin D1 (RvD1) for their anti-inflammatory effects on macrophages in vitro. Then, Mф phenotype in terms of gene expression and secreted cytokine response was determined. Our study compared …


Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore Jun 2015

Cell Wall Mutants In Arabidopsis Thaliana, Christy Jane Moore

Theses and Dissertations

Plant cell walls are versatile structures, playing important roles in communication, defense, organization and support. The importance of each of these functions varies by cell type, with specialized cells often utilizing one or two functions more than others. Trichomes, or leaf hairs, and hypocotyl cells for instance, exhibit distinct cell wall characteristics. Trichomes have developed very thick cell walls with several raised structures, known as papillae, on their surfaces. It is believed that these cells function in defense against predators, making it difficult to crawl on the leaf surface, and in protection against ultra violet radiation, through refraction of light …


Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu May 2015

Role Of Non-Muscle Myosin Ii And Calcium In Zebrafish Midbrain-Hindbrain Boundary Morphogenesis, Srishti Upasana Sahu

Theses and Dissertations

Elucidating the molecular mechanisms that play a role in cellular morphogenesis is critical to our understanding of brain development and function. The midbrain-hindbrain boundary (MHB) is one of the first folds in the vertebrate embryonic brain and is highly conserved across species. We used the zebrafish MHB as a model for determining the molecular mechanisms that regulate these cell shape changes. Cellular morphogenesis is tightly regulated by signaling pathways that rearrange the cytoskeleton and produce mechanical forces that enable changes in cell and tissue morphology. The generation of force within a cell often depends on motor proteins, particularly non-muscle myosins …


Structural And Functional Interactions Between Bro1 Domain Of Human Alix Protein And Nucleocapsid Packaging Rna Complex From Hiv, Scott Gross May 2015

Structural And Functional Interactions Between Bro1 Domain Of Human Alix Protein And Nucleocapsid Packaging Rna Complex From Hiv, Scott Gross

Graduate School of Biomedical Sciences Theses and Dissertations

A virus is only as powerful as its ability to spread. Enveloped retroviruses, namely HIV-1, use exocytosis pathways that normal host cells use to release particles from the plasma membrane. The main pathways of interest in this study are the Endosomal Sorting Complex Required for Transport (ESCRT) and adjacent ALIX pathways. The ESCRT pathway is especially important for degradation of receptor/cargo complexes that form Multi-Vesicular Bodies (MVBs). Currently, there is no known therapy that targets this endosomal pathway, which would prevent the spread of the virus to other cells. The virus has adapted to jump from pathway to pathway when …


Impacts Of Micrornas On Skeletal Muscle Protein Synthesis And Mitochondrial Quality, David Lee May 2015

Impacts Of Micrornas On Skeletal Muscle Protein Synthesis And Mitochondrial Quality, David Lee

Graduate Theses and Dissertations

microRNA (miRNA) post-transcriptional modification is becoming a well-established mechanism for controlling mRNA translation. microRNAs -1, -133, and -206 are under the control of skeletal muscle promoters and affect muscle plasticity and metabolic health. A detailed review on the generation and processing of miRNAs with a view to skeletal muscle brings up intriguing connections in the transcriptional connections between multiple miRNAs. Additionally, exciting new research has defined a role of miRNAs in skeletal muscle mitochondria showing an additional, direct link to metabolic function. Multiple investigations in models of exercise, aging, hypertrophy, and injury have shown how these interventions can affect miRNA …


Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt May 2015

Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt

Dissertations & Theses (Open Access)

Cell-cell adhesion is critical for the control of tissue organization and homeostasis. A family of proteins that regulate cell-cell adhesions is the FERM (4.1 protein, Ezrin, Radixin, Moesin) domain-containing proteins.One FERM domain protein, the non-receptor tyrosine phosphatase PTPN14, is mutated or deleted in several human cancers suggesting that it may be involved in tumor development and/or progression. Additionally, the loss of the FERM domain protein Merlin is associated with tumor development and metastasis.Both PTPN14 and Merlin have been shown to localize and possibly regulate adherens junction (AJ) functions. This work sought to determine if …


Characterization Of Ghrelin O-Acyltransferase Active Site, Leslie Patton May 2015

Characterization Of Ghrelin O-Acyltransferase Active Site, Leslie Patton

Honors Capstone Projects - All

Ghrelin, first discovered in 1999, is a 28-amino acid peptide hormone involved in the regulation of appetite, insulin secretion and sensitivity, and many neurological effects such as learning, memory, and depression.1-6 Ghrelin has been identified to have a unique posttranslational octanoylation carried out by the enzyme ghrelin O-acyltransferase (GOAT). This distinctive modification is a point of interest in studying GOAT whereby blocking the acylation of the ghrelin could potentially halt the activity of the peptide hormone and provide a means of treating obesity, diabetes, and other diseases affected by ghrelin levels. The duration of my project involved working …


Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh May 2015

Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh

Dissertations & Theses (Open Access)

In mammalian cells, DNA polymerase θ (POLQ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. The protein is comprised of an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which helps confer resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies with defective Mus308 are sensitive to DNA interstrand crosslinking …


Local Modulation And Measurement Of Macrophage-Derived Bioactive Proteins From Implanted Biomaterials In Rat, Geetika Bajpai May 2015

Local Modulation And Measurement Of Macrophage-Derived Bioactive Proteins From Implanted Biomaterials In Rat, Geetika Bajpai

Graduate Theses and Dissertations

Fibrosis around the implanted medical devices is a severe problem that can plague long-term device reliability. Activation of macrophage phenotype (macrophage polarization) has emerged as a new and possible means for reducing fibrosis in the fields of biomaterials and regenerative medicine. Macrophages are phagocytic cells that respond to microenvironmental cues that direct their phenotype. Macrophage activation has been widely studied in mouse and human in the context of tumor biology, yet little information is available regarding how macrophage activation could be used in a biomaterials context. Further, rats rather than mice are the common subjects in biomaterials experiments. A significant …


Characterization Of A Novel Clade Of Transporters In Phytophthora, Stephanie Padula, Paul F. Morris Dr, Howard Casey Cromwell Dr., Menaka Ariyaratne, Andrew Wagner May 2015

Characterization Of A Novel Clade Of Transporters In Phytophthora, Stephanie Padula, Paul F. Morris Dr, Howard Casey Cromwell Dr., Menaka Ariyaratne, Andrew Wagner

Honors Projects

The oomycete Phytophthora parasitica has a worldwide distribution and is an economically important pathogen of more than 100 species4. RNA-seq analysis showed that one gene, PPTG_16698 has the 5th highest level of expression of all transport proteins in the zoospore stage, and is highly conserved throughout Phytophthora species. This project attempts to characterize the important biological role that PPTG_16698 plays in P. parasitica and other oomycetes. Three strategies have been implemented to accomplish this goal: growth analysis by heterologous expression in yeast, metabolite analysis in yeast, and construction of a GFP fusion protein to enable localization of …


Analysis Of Chd Remodelers During Development: A Tale In Two Organisms, Brett Bishop Apr 2015

Analysis Of Chd Remodelers During Development: A Tale In Two Organisms, Brett Bishop

Open Access Dissertations

The correct development of different organisms requires the precise timing of genes important for development transitions. Organisms have recruited ATP-dependent chromatin remodelers to ensure the correct timing of gene expression during developmental transitions. Here I show how different CHD ATP-dependent chromatin remodelers regulate developmental transitions of different organisms. I show that PICKLE not only promotes H3K27me3 during development to repress developmental genes but also is targeted to these genes. The association of PICKLE to these genes suggests that both repression and H3K27me3 levels is a direct action of PICKLE on these loci. Using zebrafish as a model system, I show …


Promoting Genome Stability Via Multiple Dna Repair Pathways, Scott Cukras Feb 2015

Promoting Genome Stability Via Multiple Dna Repair Pathways, Scott Cukras

USF Tampa Graduate Theses and Dissertations

Maintaining genome integrity is indispensible for cells to prevent and limit accruement of deleterious mutations and to promote viable cell growth and proliferation. Cells possess a myriad of mechanisms to detect, prevent and repair incurred cellular damage. Here we discuss various proteins and their accompanying cellular pathways that promote genome stability. We first investigate the NEDD8 protein and its role in promoting homologous recombination repair via multiple Cullin E3 ubiquitin ligases. We provide specific mechanisms through which, UBE2M, an E2 conjugating enzyme, neddylates various Cullin ligases to render them catalytically active to degrade their substrates by the proteasome. We show …


Proteasome Inhibition As A Potential Anti-Breast Cancer Therapy: Mechanisms Of Action And Resistance-Reversing Strategies, Rahul Rajesinh Deshmukh Jan 2015

Proteasome Inhibition As A Potential Anti-Breast Cancer Therapy: Mechanisms Of Action And Resistance-Reversing Strategies, Rahul Rajesinh Deshmukh

Wayne State University Dissertations

AMPK activation and Ubiquitin Proteasome System (UPS) inhibition have gained great attention as therapeutic strategies for the treatment of certain types of cancers. While AMPK serves as a master regulator of cellular metabolism, UPS regulates protein homeostasis. Although the crosstalk between them is suggested, the relationship between these two important pathways is not very clear. We observed that proteasome inhibition leads to AMPK activation in human breast cancer cells. We report that a variety of proteasome inhibitors activate AMPK in all of the tested cancer cell lines. Our data using Liver Kinase B1 (LKB1)-deficient cancer cells suggests that proteasome inhibitor-induced …


The Significance Of Crispr/Cas9-Directed Cul3 Knockout On Human Colorectal Cancer Cells, Zoe A. Lautz Jan 2015

The Significance Of Crispr/Cas9-Directed Cul3 Knockout On Human Colorectal Cancer Cells, Zoe A. Lautz

Departmental Honors Projects

Cancer, the second leading cause of death in the US, is caused by mutations in select genes that alter cellular function leading to uncontrolled proliferation. Understanding the specific genes that drive cancer can lead to the generation of novel cancer therapies. To identify novel genes that drive cancer in the colon (CRC), lungs, and ovaries in mice, Starr et al. employed a transposon-based insertional mutagenesis system. One of the genes identified, APC, is mutated in 70-80% of human CRCs. CUL3, suspected to be a general driver gene, was discovered in the lung cancer screen. CUL3 was analyzed for its role …


Mach: A Model For Explaining Molecular And Cellular Mechanisms, Caleb M. Trujillo Jan 2015

Mach: A Model For Explaining Molecular And Cellular Mechanisms, Caleb M. Trujillo

Open Access Dissertations

Biologists use mechanistic explanations to understand behaviors of the immense complexity of molecular and cellular systems. In undergraduate biology courses, students are expected to explain molecular and cellular mechanisms, but teaching this skill presents many challenges due to the highly abstract, intangible nature of the cellular world, the influence of everyday language, and the tendency of students to overestimate how much they can explain. Therefore, across three studies this dissertation addresses these obstacles to teach undergraduate biology students to explain molecular and cellular mechanisms. ^ The first step was to model how biology experts explain molecular and cellular mechanisms, and …