Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Molecular Biology

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne Dec 2016

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.


The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias Nov 2016

The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent …


Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba Sep 2016

Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and …


Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba Sep 2016

Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu …


Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau Aug 2016

Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for …


Conformational Dynamics And Stability Associated With Magnesium Or Calcium Binding To Dream In The Regulation Of Interactions Between Dream And Dna Or Presenilins, Khoa Ngoc Pham Jun 2016

Conformational Dynamics And Stability Associated With Magnesium Or Calcium Binding To Dream In The Regulation Of Interactions Between Dream And Dna Or Presenilins, Khoa Ngoc Pham

FIU Electronic Theses and Dissertations

Downstream regulatory element antagonist modulator (DREAM) is involved in various interactions with targets both inside and outside of the nucleus. In the cytoplasm, DREAM interacts with the C-terminal fragments of presenilins to facilitate the production of β-amyloid plaques in Alzheimer’s disease. In the nucleus, Ca2+ free DREAM directly binds to specific downstream regulatory elements of prodynorphin/c-fos gene to repress the gene transcription in pain modulation. These interactions are regulated by Ca2+ and/or Mg2+ association at the EF-hands in DREAM. Therefore, understanding the conformational dynamics and stability associated with Ca2+ and/or Mg2+ binding to DREAM …


Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba May 2016

Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys32 of B. subtilis EF-P that is …


Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba May 2016

Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond …


Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera Apr 2016

Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera

University Scholar Projects

The Giardina Laboratory has recently identified AK301 as a novel mitotic arrest agent. This work aimed to characterize the arrest state induced by AK301 (EC50 ~ 150nM) and identify the cellar targets responsible for the arrest. It was found that AK301 arrest is readily reversible upon withdrawal of AK301. Cells that slip from mitosis after removal of AK301 are sensitized to apoptosis. This was found to be unique for AK301 when compared to other mitotic arrest agents like colchicine, vincristine, and BI2536. Arrested cells were found to have increased ATM activity as well as an upregulation of p53 and …


Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert Apr 2016

Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance …