Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Structural And Functional Characterization Of Hyper-Phosphorylated Grk5 Protein Expressed From E. Coli, Joseph M. Krampen, John Tesmer, Qiuyan Chen Aug 2018

Structural And Functional Characterization Of Hyper-Phosphorylated Grk5 Protein Expressed From E. Coli, Joseph M. Krampen, John Tesmer, Qiuyan Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

G protein-coupled receptor (GPCR) kinases (GRKs) are proteins in the cell responsible for regulating GPCRs located on the cell membrane. GRKs regulate active GPCRs by phosphorylating them at certain sites which causes them to stop normal signaling on the membrane. This ultimately affects how the cell responds to its environment. GRK5 is a kinase of particular interest due to its involvement in the pathology of diseases such as cardiac failure, cancers, and diabetes. Understanding the structure and function of GRK5 is essential for discovering ways to manipulate its behavior with these diseases, but not much is known about how GRK5 …


Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar Aug 2015

Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ubiquitin specific proteases (USPs) are a class of enzymes involved in myriad cellular processes. One USP of great interest due to its oncogenic properties is USP7. In normal conditions USP7 is closely regulated due to its responsibility for destabilizing the tumor suppressor, p53, through the deubiquitination of MDM2. In multiple myeloma cases, it appears the regulation of USP7 subsides, as it is largely overexpressed, leading to the inappropriate degradation of p53. Inhibition of USP7 could, therefore, prove a viable target for cancer therapy. A greater understanding of USP7’s function and structure can lead to more insight into how this enzyme …