Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Hepatic Dysfunction Caused By Consumption Of A High-Fat Diet, Anthony R. Soltis, Norman J. Kennedy, Xiaofeng Xin, Feng Zhou, Scott B. Ficarro, Yoon Sing Yap, Bryan J. Matthews, Douglas A. Lauffenburger, Forest M. White, Jarrod A. Marto, Roger J. Davis, Ernest Fraenkel Dec 2017

Hepatic Dysfunction Caused By Consumption Of A High-Fat Diet, Anthony R. Soltis, Norman J. Kennedy, Xiaofeng Xin, Feng Zhou, Scott B. Ficarro, Yoon Sing Yap, Bryan J. Matthews, Douglas A. Lauffenburger, Forest M. White, Jarrod A. Marto, Roger J. Davis, Ernest Fraenkel

University of Massachusetts Medical School Faculty Publications

Obesity is a major human health crisis that promotes insulin resistance and, ultimately, type 2 diabetes. The molecular mechanisms that mediate this response occur across many highly complex biological regulatory levels that are incompletely understood. Here, we present a comprehensive molecular systems biology study of hepatic responses to high-fat feeding in mice. We interrogated diet-induced epigenomic, transcriptomic, proteomic, and metabolomic alterations using high-throughput omic methods and used a network modeling approach to integrate these diverse molecular signals. Our model indicated that disruption of hepatic architecture and enhanced hepatocyte apoptosis are among the numerous biological processes that contribute to early liver ...


Fundamental Limits On Dynamic Inference From Single Cell Snapshots, Caleb Weinreb, Samuel Wolock, Betsabeh K. Tusi, Merav Socolovsky, Allon M. Klein Aug 2017

Fundamental Limits On Dynamic Inference From Single Cell Snapshots, Caleb Weinreb, Samuel Wolock, Betsabeh K. Tusi, Merav Socolovsky, Allon M. Klein

University of Massachusetts Medical School Faculty Publications

Single cell expression profiling reveals the molecular states of individual cells with unprecedented detail. However, because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. But some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by ...