Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Identification Of A Novel Invasion-Promoting Region In Insulin Receptor Substrate 2, Jose Mercado-Matos, Jenny Janusis, Sha Zhu, Samuel S. Chen, Leslie M. Shaw Jun 2018

Identification Of A Novel Invasion-Promoting Region In Insulin Receptor Substrate 2, Jose Mercado-Matos, Jenny Janusis, Sha Zhu, Samuel S. Chen, Leslie M. Shaw

University of Massachusetts Medical School Faculty Publications

Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K ...


Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres Dec 2017

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres

University of Massachusetts Medical School Faculty Publications

Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness ...