Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

UMass Metabolic Network Publications

Transcription

Discipline

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Casein Kinase 2-Mediated Phosphorylation Of Brahma-Related Gene 1 Controls Myoblast Proliferation And Contributes To Swi/Snf Complex Composition, Teresita Padilla-Benavides, Brian T. Nasipak, Amanda L. Paskavitz, Dominic T. Haokip, Jake M. Schnabl, Jeffrey A. Nickerson, Anthony N. Imbalzano Nov 2017

Casein Kinase 2-Mediated Phosphorylation Of Brahma-Related Gene 1 Controls Myoblast Proliferation And Contributes To Swi/Snf Complex Composition, Teresita Padilla-Benavides, Brian T. Nasipak, Amanda L. Paskavitz, Dominic T. Haokip, Jake M. Schnabl, Jeffrey A. Nickerson, Anthony N. Imbalzano

UMass Metabolic Network Publications

Transcriptional regulation is modulated in part by chromatin-remodeling enzymes that control gene accessibility by altering chromatin compaction or nucleosome positioning. Brahma-related gene 1 (Brg1), a catalytic subunit of the mammalian SWI/SNF chromatin-remodeling enzymes, is required for both myoblast proliferation and differentiation, and the control of Brg1 phosphorylation by calcineurin, PKCbeta1, and p38 regulates the transition to differentiation. However, we hypothesized that Brg1 activity might be regulated by additional kinases. Here, we report that Brg1 is also a target of casein kinase 2 (CK2), a serine/threonine kinase, in proliferating myoblasts. We found that CK2 interacts with Brg1, and mutation ...


A Synthetic Biology Approach To Probing Nucleosome Symmetry, Yuichi Ichikawa, Caitlin M. Connolly, Hsin-Jung Chou, Yuanyuan Chen, Upasna Sharma, Hsuiyi V. Chen, Vineeta Bajaj, Daniel Na. Bolon, Oliver J. Rando, Paul D. Kaufman Sep 2017

A Synthetic Biology Approach To Probing Nucleosome Symmetry, Yuichi Ichikawa, Caitlin M. Connolly, Hsin-Jung Chou, Yuanyuan Chen, Upasna Sharma, Hsuiyi V. Chen, Vineeta Bajaj, Daniel Na. Bolon, Oliver J. Rando, Paul D. Kaufman

UMass Metabolic Network Publications

The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and several recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read out, we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing the effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We also demonstrate the utility of this ...