Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Publicly Accessible Penn Dissertations

2016

Neuroscience and Neurobiology

Development

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Identification Of Novel Molecular-Genetic Pathways Regulating The Development Of Subpallial Derivatives, David Tischfield Jan 2016

Identification Of Novel Molecular-Genetic Pathways Regulating The Development Of Subpallial Derivatives, David Tischfield

Publicly Accessible Penn Dissertations

The embryonic subpallium produces many different neuronal cell types present throughout the adult telencephalon, including striatal medium spiny neurons (MSN) and cortical interneurons. Dysfunction of either cell type leads to neurological and psychiatric disorders including schizophrenia, epilepsy, and Tourette’s syndrome. Thus, understanding the molecular pathways that regulate their development and function has important implications for understanding disease pathogenesis. This work describes novel methods and genetic factors that expand our ability to characterize the development and function of two major subpallial derivatives: cortical interneurons and striatal MSN. The first part of this thesis characterizes a novel enrichment method for producing ...


Multiple Roles Of Ret Signaling In Mechanosensory Neuron Development, Michael Scott Fleming Jan 2016

Multiple Roles Of Ret Signaling In Mechanosensory Neuron Development, Michael Scott Fleming

Publicly Accessible Penn Dissertations

Somatosensation is critical for interaction with the surrounding environment. Somatosensory stimuli are detected by primary somatosensory neurons of the dorsal root ganglia and trigeminal ganglia, which detect distinct classes of stimuli, such as temperature, pain, and pressure. In Chapters 2 and 3 of this thesis, we focus on rapidly adapting low-threshold mechanoreceptors (RALTMRs), which mediate the detection of light touch. RALTMRs are molecularly defined by the early embryonic expression of the receptor tyrosine kinase Ret. Ret is required for the development of central axonal projections of RALTMRs into the dorsal spinal cord. RET responds to the glial cell line-derived family ...