Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Biology

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Vascular Endothelial Growth Factor-A Gene Electrotransfer Promotes Angiogenesis In A Porcine Model Of Cardiac Ischemia, Anna A. Bulysheva, Barbara Hargrave, Nina Burcus, Cathryn G. Lundberg, Len Murray, Richard Heller Aug 2016

Vascular Endothelial Growth Factor-A Gene Electrotransfer Promotes Angiogenesis In A Porcine Model Of Cardiac Ischemia, Anna A. Bulysheva, Barbara Hargrave, Nina Burcus, Cathryn G. Lundberg, Len Murray, Richard Heller

Bioelectrics Publications

This study aimed to assess safety and therapeutic potential of gene electrotransfer (GET) as a method for delivery of plasmid encoding vascular endothelial growth factor A (VEGF-A) to ischemic myocardium in a porcine model. Myocardial ischemia was induced by surgically occluding the left anterior descending coronary artery in swine. GET following plasmid encoding VEGF-A injection was performed at four sites in the ischemic region. Control groups either received injections of the plasmid without electrotransfer or injections of the saline vehicle. Animals were monitored for 7 weeks and the hearts were evaluated for angiogenesis, myocardial infarct size and left ventricular contractility. …


Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller May 2011

Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller

Bioelectrics Publications

Electroporation (EP) is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues. Delivery of plasmid DNA by EP to a large surface area is not practical because the distance between the electrode pairs, and therefore the applied voltage, must be increased to effectively permeabilize the cell membrane. The design of the multielectrode array (MEA) incorporates multiple electrode pairs at a fixed distance to allow for delivery of plasmid DNA to the skin, potentially reducing the sensation associated with in vivo EP. In this report, we evaluate the effects of field …


Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola Oct 2002

Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola

Bioelectrics Publications

In vivo electroporation is an efficient means of increasing plasmid DNA delivery to normal tissues, such as skin and muscle, as well as directly to tumors. In the experiments described here, plasmid DNA was delivered by in vivo electroporation to B16 mouse melanomas using two very different pulsing protocols. Reporter expression increased 21- or 42-fold, respectively with electroporation over injection alone. The growth of experimental melanomas with an approximate diameter of 4 mm on the day of treatment was monitored after electroporation delivery of reporter plasmid DNA. Remarkably, short-term complete regressions using one of these pulsing protocols occurred in up …