Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular Biology

The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik Feb 2017

The Mirnaome Of Catharanthus Roseus: Identification, Expression Analysis, And Potential Roles Of Micrornas In Regulation Of Terpenoid Indole Alkaloid Biosynthesis, Ethan M. Shen, Sanjay Kumar Singh, Jayadri S. Ghosh, Barunava Patra, Priyanka Paul, Ling Yuan, Sitakanta Pattanaik

Plant and Soil Sciences Faculty Publications

MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus ...


The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson Sep 2010

The Mir-15/107 Group Of Microrna Genes: Evolutionary Biology, Cellular Functions, And Roles In Human Diseases, John R. Finnerty, Wang-Xia Wang, Sébastien S. Hébert, Bernard R. Wilfred, Guogen Mao, Peter T. Nelson

Pathology and Laboratory Medicine Faculty Publications

The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs ...


A Simple Array Platform For Microrna Analysis And Its Application In Mouse Tissues, Xiaoqing Tang, Jozsef Gal, Xun Zhuang, Wang-Xia Wang, Haining Zhu, Guiliang Tang Oct 2007

A Simple Array Platform For Microrna Analysis And Its Application In Mouse Tissues, Xiaoqing Tang, Jozsef Gal, Xun Zhuang, Wang-Xia Wang, Haining Zhu, Guiliang Tang

Plant and Soil Sciences Faculty Publications

MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression at the post-transcriptional level and play a critical role in many important biological processes. Most miRNAs are conserved between humans and mice, which makes it possible to analyze their expressions with a set of selected array probes. Here, we report a simple array platform that can detect 553 nonredundant miRNAs encompassing the entire set of miRNAs for humans and mice. The platform features carefully selected and designed probes with optimized hybridization parameters. Potential cross-reaction between mature miRNAs and their precursors was investigated. The array platform was ...