Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Molecular Biology

Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens Jan 2020

Characterization And Enzyme Engineering Of Laccases Towards Lignin Valorization In Aqueous Ionic Liquids, Joseph Stevens

Theses and Dissertations--Biosystems and Agricultural Engineering

Lignin is one of the most abundant polymers found in nature, making up 15 – 40% of the weight of terrestrial biomass. Due to the structural and monomeric heterogeneity of lignin, it is recalcitrant thermochemical and biological valorization methods. Converting lignin to value-added products via sustainable and cost-effective pathways will reduce waste and add value to future cellulosic biorefineries. Biological methods for lignin valorization (e.g. lignin degrading enzymes or microbes) is limited by low lignin solubility in biocompatible solvents, resulting in low product yield. Recent reports on biocatalysts for lignin valorization have focused on the lignolytic multicopper oxidase laccase, …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we …


Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan Jan 2018

Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan

Theses and Dissertations--Pharmacy

A-102395 is a member of the capuramycin family of antibiotics which was isolated from the culture broth of Amycolatopsis sp. SANK 60206. A-102339 is structurally classified as a nucleoside antibiotic, which like all members of the capuramycin family, inhibits bacterial MraY (translocase I) with IC50 of 11 nM which is the lowest among the capuramycin family. A semisynthetic derivative of capuramycin is currently in clinical trials as an antituberculosis antibiotic, suggesting high potential for using A-102395 as a starting point for new antibiotic discovery. In contrast to other capuramycins, A-102395 has a unique arylamine-containing polyamide side chain. The biosynthetic …


Investigation Of The Mechanism Of Action For Mithramycin And The Biosynthesis Of L-Rednose In Saquayamycins, Stevi Weidenbach Jan 2017

Investigation Of The Mechanism Of Action For Mithramycin And The Biosynthesis Of L-Rednose In Saquayamycins, Stevi Weidenbach

Theses and Dissertations--Pharmacy

Natural products continue to be a major chemical lead matter for drug discovery due to their diverse chemical structures and bioactivities. Clinically significant natural products include anti-cancer and anti-infective compounds and while many more of these compounds show promising bioactivity, their clinical relevance is often limited by toxicity or poor solubility. Combinatorial biosynthesis can be employed to modify existing chemical scaffolds towards reducing these limitations. To fully take advantage of these biochemical tools, it is important to understand the biosynthesis and mechanism of action of the molecules.

Saccharides in glycosylated natural products provide specific interactions with cellular targets and are …


The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao Jan 2017

The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao

Theses and Dissertations--Plant and Soil Sciences

Drought stress is considered one of the most devastating abiotic stress factors that limit crop productivity for modern agriculture worldwide. There is a large range of physiological and biochemical responses induced by drought stress. The responses range from physiological and biochemical to regulation at transcription and posttranscriptional levels. Post-transcription, the products encoded by eukaryotic genes must undergo a series of modifications to become a mature mRNA. Polyadenylation is an important one in terms of regulation. Polyadenylation impacts gene expression through determining the coding and regulation potential of the mRNA, especially when different mRNAs from the same gene may be polyadenylated …


Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui Jan 2017

Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui

Theses and Dissertations--Plant and Soil Sciences

Catharanthus roseus (Madagascar periwinkle), is a well-known medicinal plant that produces a vast array of terpenoid indole alkaloids (TIAs), including two anticancer compounds vinblastine and vincristine. Industrial scale production of TIAs is hampered by the difficulties of total chemical synthesis of these compounds and the fragmented knowledge on TIA pathway. Transcriptional regulation of the TIA biosynthetic pathway has not been thoroughly investigated in Catharanthus and only a few structural genes have been identified as the targets of two master regulators: the basic helix-loop-helix (bHLH) transcription factor (TF) CrMYC2 and APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), ORCA3. Next generation sequencing (NGS) has been …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …