Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu Apr 2018

Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu

Chemistry Faculty Publications

The role of electrostatic interactions in the viral capsid assembly process was studied by comparing the assembly process of a truncated hepatitis B virus capsid protein Cp149 with its mutant protein D2N/D4N, which has the same conformational structure but four fewer charges per dimer. The capsid protein self-assembly was investigated under a wide range of protein surface charge densities by changing the protein concentration, buffer pH, and solution ionic strength. Lowering the protein charge density favored the capsid formation. However, lowering charge beyond a certain point resulted in capsid aggregation and precipitation. Interestingly, both the wild-type and D2N/D4N mutant displayed …


An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo Oct 2016

An Arginine Finger Regulates The Sequential Action Of Asymmetrical Hexameric Atpase In The Double-Stranded Dna Translocation Motor, Zhengyi Zhao, Gian Marco De-Donatis, Chad T. Schwartz, Huaming Fang, Jingyuan Li, Peixuan Guo

Pharmaceutical Sciences Faculty Publications

Biological motors are ubiquitous in living systems. Currently, how the motor components coordinate the unidirectional motion is elusive in most cases. Here, we report that the sequential action of the ATPase ring in the DNA packaging motor of bacteriophage ϕ29 is regulated by an arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation reappeared when arginine mutants were mixed with other ATPase subunits that can offer the arginine to promote their interaction. Ultracentrifugation …