Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods May 2019

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods

MSU Graduate Theses

Mucopolysaccharidosis type I (MPS I) is a rare, autosomal recessive disorder caused by the deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Absence of IDUA results in the accumulation of dermatan and heparin sulfate and ultimately causes multi-system dysfunction. The most severe form of MPS I is Hurlers syndrome, a rapidly progressive disorder that, if left untreated, is fatal. Current treatment options for diagnosed individuals includes hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). These treatments are able to ameliorate the majority of symptoms with the exception of the bone phenotype. This investigation aimed to further characterize the bone ...


Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor May 2019

Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor

MSU Graduate Theses

Uncoating is a poorly understood yet required step of HIV-1 replication that is defined as the disassembly of the viral capsid structure. The goal of this project is to characterize uncoating in C20 microglial cells. These cells are a natural target of HIV-1 that are infected to establish latent viral reservoirs and HIV-associated neurological disorders. A stable C20 cell line that expresses TRIM-CypA was established to study the kinetics of uncoating with the CsA washout assay. The expression of TRIM-CypA was confirmed by western blot and the functionality of the protein was confirmed by a viral infectivity assay. Using this ...


The Dynamin-Like Protein Vps1 Stimulates Endosome-To-Golgi Fusion In Vitro, Jared Christopher Smothers Jan 2019

The Dynamin-Like Protein Vps1 Stimulates Endosome-To-Golgi Fusion In Vitro, Jared Christopher Smothers

MSU Graduate Theses

Intracellular membrane fusion events can be reconstituted by exploiting isolated organelles from cellular hosts or artificial membranes made of purified phospholipid components. Artificial construction of membranes provides two significant advantages. First, cellular isolation of the endosome-derived vesicles and TGN (trans-Golgi Network) compartments needed for the fusion assay would be extremely challenging. Second, reconstituting the membranes provides the added benefit of controlling size and lipid compositions to functionally mimic the individual membrane architectures and introduce only the purified proteins that are under investigation. For these reasons, I have developed the first simultaneous lipid and content mixing fusion assays that measures the ...


Evaluation Of Motor Cortex Neuronal Morphology In Developmental Hyperserotonemia Rat Model, Colten Z. Dillinger Dec 2018

Evaluation Of Motor Cortex Neuronal Morphology In Developmental Hyperserotonemia Rat Model, Colten Z. Dillinger

MSU Graduate Theses

Fetal serotonin levels are involved in the development of the serotonergic system in an autoregulatory manner as well as the organization and connectivity of non-serotonergic neurons. Insufficient serotonin levels during development result in improper neuronal maturation and decreased synaptogenesis. Conversely, excess developmental serotonin levels can alter the progression of serotonergic neurons, ultimately resulting in a chronic decrease of serotonin in the developed brain via a negative feedback mechanism. There is a known correlation between autistic patients and chronically decreased brain serotonin concentrations; this is potentially implicated in the impaired development of the autistic brain. Incomplete or delayed development of motor ...


The Role Of Rad4 In Dna Repair And Its Interplay With Telomeres In Tetrahymena Thermophila, Emily Nischwitz Aug 2018

The Role Of Rad4 In Dna Repair And Its Interplay With Telomeres In Tetrahymena Thermophila, Emily Nischwitz

MSU Graduate Theses

Telomeres are repetitive parts of the genome that act as a protective end cap to the chromosomes. Telomeres are critical to the integrity and stability of the genome, therefore, ensuring that their sequence is maintained, even after damage, is crucial. Much of the pioneering work responsible for explaining telomeres has been conducted in ciliates, specifically in Tetrahymena thermophila. Telomeres in T. thermophila have a high amount of tandem thymine repeats (GGGGTT) and, thus, are susceptible to ultraviolet light (UV) induced lesions called pyrimidine dimers, which must be repaired by nucleotide excision repair (NER). In humans, Xeroderma Pigmentosum C (XPC) is ...


Investigation Of The Homologs Rad51 And Dmc1 Role In Cell Division And Homologous Recombination, Amaal Abulibdeh May 2018

Investigation Of The Homologs Rad51 And Dmc1 Role In Cell Division And Homologous Recombination, Amaal Abulibdeh

MSU Graduate Theses

RecA-like proteins homologs Rad51 and Dmc1 (disruption of meiotic control) promote recombination between homologous chromosomes by repairing programmed DNA Double-Strand Breaks (DSBs). Dmc1 is a Recombinase involved in meiosis-specific repair of DSBs, whereas Rad51 has been found to be involved in meiotic and non-meiotic DSBs repair. Previous studies showed that when RAD51 is overexpressed, interhomologous recombination still occurs even when DMC1 is knocked out. Dmc1 and Rad51 have not been fully characterized in the ciliate Tetrahymena thermophila. In order to more fully investigate the role of Rad51 and Dmc1 in Homologous Recombination Repair (HHR), this work focuses on using a ...


Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson May 2018

Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson

MSU Graduate Theses

Rad23 is a protein involved in both nucleotide excision repair (NER) and proteasome-mediated degradation, and has been suggested to facilitate interactions between these two pathways. The model organism Tetrahymena thermophila, which has a transcriptionally silent micronucleus, provides a useful platform for studying the role of Rad23 in global genome NER (GG-NER). However, the ectopic expression systems used thus far in T. thermophila to study Rad23 are repressed by UV light and do not account for the background expression of endogenous RAD23; these phenomena prevent insightful gains to the true dynamics of Rad23. In this thesis, endogenous tagging cassettes have been ...