Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Molecular Biology

An Aryl Hydrocarbon Receptor From The Salamander Ambystoma Mexicanum Exhibits Low Sensitivity To 2,3,7,8-Tetrachlorodibenzo-P-Dioxin, Wade Powell Jun 2015

An Aryl Hydrocarbon Receptor From The Salamander Ambystoma Mexicanum Exhibits Low Sensitivity To 2,3,7,8-Tetrachlorodibenzo-P-Dioxin, Wade Powell

Wade Powell

n/a


Structural Basis And Distal Effects Of Gag Substrate Coevolution In Drug Resistance To Hiv-1 Protease, Aysegul Ozen, Kuan-Hung Lin, Nese Yilmaz, Celia Schiffer Jan 2015

Structural Basis And Distal Effects Of Gag Substrate Coevolution In Drug Resistance To Hiv-1 Protease, Aysegul Ozen, Kuan-Hung Lin, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in response to HIV-1 protease inhibitors are selected not only in the drug target but elsewhere in the viral genome, especially at the protease cleavage sites in the precursor protein Gag. To understand the molecular basis of this protease-substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease-substrate interactions reveal that compensatory coevolved mutations in the substrate do not restore interactions lost due to protease mutations, but instead establish other interactions that are not restricted to the site of mutation. Mutation of a ...


Structural Analysis Of Asunaprevir Resistance In Hcv Ns3/4a Protease, Djade Soumana, Akbar Ali, Celia Schiffer Jan 2015

Structural Analysis Of Asunaprevir Resistance In Hcv Ns3/4a Protease, Djade Soumana, Akbar Ali, Celia Schiffer

Celia A. Schiffer

Asunaprevir (ASV), an isoquinoline-based competitive inhibitor targeting the hepatitis C virus (HCV) NS3/4A protease, is very potent in vivo. However, the potency is significantly compromised by the drug resistance mutations R155K and D168A. In this study three crystal structures of ASV and an analogue were determined to analyze the structural basis of drug resistance susceptibility. These structures revealed that ASV makes extensive contacts with Arg155 outside the substrate envelope. Arg155 in turn is stabilized by Asp168, and thus when either residue is mutated, the enzyme's interaction with ASV's P2* isoquinoline is disrupted. Adding a P1-P3 macrocycle to ...


A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom Jan 2015

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom

Celia A. Schiffer

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal ...


Drug Resistance Conferred By Mutations Outside The Active Site Through Alterations In The Dynamic And Structural Ensemble Of Hiv-1 Protease, Debra Ragland, Ellen Nalivaika, Madhavi Nalam, Kristina Prachanronarong, Hong Cao, Rajintha Bandaranayake, Yufeng Cai, Nese Yilmaz, Celia Schiffer Jan 2015

Drug Resistance Conferred By Mutations Outside The Active Site Through Alterations In The Dynamic And Structural Ensemble Of Hiv-1 Protease, Debra Ragland, Ellen Nalivaika, Madhavi Nalam, Kristina Prachanronarong, Hong Cao, Rajintha Bandaranayake, Yufeng Cai, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

HIV-1 protease inhibitors are part of the highly active antiretroviral therapy effectively used in the treatment of HIV infection and AIDS. Darunavir (DRV) is the most potent of these inhibitors, soliciting drug resistance only when a complex combination of mutations occur both inside and outside the protease active site. With few exceptions, the role of mutations outside the active site in conferring resistance remains largely elusive. Through a series of DRV-protease complex crystal structures, inhibition assays, and molecular dynamics simulations, we find that single and double site mutations outside the active site often associated with DRV resistance alter the structure ...


Testing The Substrate-Envelope Hypothesis With Designed Pairs Of Compounds, Yang Shen, Michael Altman, Akbar Ali, Madhavi Nalam, Hong Cao, Tariq Rana, Celia Schiffer, Bruce Tidor Jan 2015

Testing The Substrate-Envelope Hypothesis With Designed Pairs Of Compounds, Yang Shen, Michael Altman, Akbar Ali, Madhavi Nalam, Hong Cao, Tariq Rana, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Acquired resistance to therapeutic agents is a significant barrier to the development of clinically effective treatments for diseases in which evolution occurs on clinical time scales, frequently arising from target mutations. We previously reported a general strategy to design effective inhibitors for rapidly mutating enzyme targets, which we demonstrated for HIV-1 protease inhibition [Altman et al. J. Am. Chem. Soc. 2008, 130, 6099-6113]. Specifically, we developed a computational inverse design procedure with the added constraint that designed inhibitors bind entirely inside the substrate envelope, a consensus volume occupied by natural substrates. The rationale for the substrate-envelope constraint is that it ...


Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen Jan 2015

Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen

Celia A. Schiffer

Current antiretroviral treatments target multiple pathways important for human immunodeficiency virus (HIV) multiplication, including viral entry, synthesis and integration of the DNA provirus, and the processing of viral polyprotein precursors. However, HIV is becoming increasingly resistant to these "combination therapies." Recent findings show that inhibition of HIV Gag protein cleavage into its two structural proteins, matrix (MA) and capsid (CA), has a devastating effect on viral production, revealing a potential new target class for HIV treatment. Unlike the widely used HIV protease inhibitors, this new class of inhibitor would target the substrate, not the protease enzyme itself. This approach offers ...


Hiv-1 Protease-Substrate Coevolution In Nelfinavir Resistance, Madhavi Kolli, Aysegul Ozen, Nese Yilmaz, Celia Schiffer Jan 2015

Hiv-1 Protease-Substrate Coevolution In Nelfinavir Resistance, Madhavi Kolli, Aysegul Ozen, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations ...


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against ...


Advanced Molecular Biologic Techniques In Toxicologic Disease, Jeanine Ward, Gyongyi Szabo, David Mcmanus, Edward Boyer Oct 2012

Advanced Molecular Biologic Techniques In Toxicologic Disease, Jeanine Ward, Gyongyi Szabo, David Mcmanus, Edward Boyer

Gyongyi Szabo

The advancement of molecular biologic techniques and their capabilities to answer questions pertaining to mechanisms of pathophysiologic events have greatly expanded over the past few years. In particular, these opportunities have provided researchers and clinicians alike the framework from with which to answer clinical questions not amenable for elucidation using previous, more antiquated methods. Utilizing extremely small molecules, namely microRNA, DNA, protein, and nanoparticles, we discuss the background and utility of these approaches to the progressive, practicing physician. Finally, we consider the application of these tools employed as future bedside point of care tests, aiding in the ultimate goal of ...


Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar Oct 2012

Mass Spectrometry Tools For Analysis Of Intermolecular Interactions, Jared Auclair, Mohan Somasundaran, Karin Green, James Evans, Celia Schiffer, Dagmar Ringe, Gregory Petsko, Jeffrey Agar

Celia A. Schiffer

The small quantities of protein required for mass spectrometry (MS) make it a powerful tool to detect binding (protein-protein, protein-small molecule, etc.) of proteins that are difficult to express in large quantities, as is the case for many intrinsically disordered proteins. Chemical cross-linking, proteolysis, and MS analysis, combined, are a powerful tool for the identification of binding domains. Here, we present a traditional approach to determine protein-protein interaction binding sites using heavy water ((18)O) as a label. This technique is relatively inexpensive and can be performed on any mass spectrometer without specialized software.


Context Surrounding Processing Sites Is Crucial In Determining Cleavage Rate Of A Subset Of Processing Sites In Hiv-1 Gag And Gag-Pro-Pol Polyprotein Precursors By Viral Protease, Sook-Kyung Lee, Marc Potempa, Madhavi Kolli, Aysegul Ozen, Celia Schiffer, Ronald Swanstrom Oct 2012

Context Surrounding Processing Sites Is Crucial In Determining Cleavage Rate Of A Subset Of Processing Sites In Hiv-1 Gag And Gag-Pro-Pol Polyprotein Precursors By Viral Protease, Sook-Kyung Lee, Marc Potempa, Madhavi Kolli, Aysegul Ozen, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates ...


Promise Of Advances In Simulation Methods For Protein Crystallography: Implicit Solvent Models, Time-Averaging Refinement, And Quantum Mechanical Modeling, Celia Schiffer, Jan Hermans Nov 2011

Promise Of Advances In Simulation Methods For Protein Crystallography: Implicit Solvent Models, Time-Averaging Refinement, And Quantum Mechanical Modeling, Celia Schiffer, Jan Hermans

Celia A. Schiffer

No abstract provided.


Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin Nov 2011

Competition Between Ski And Creb-Binding Protein For Binding To Smad Proteins In Transforming Growth Factor-Beta Signaling, Weijun Chen, Suvana Lam, Hema Srinath, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

The family of Smad proteins mediates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. Smads repress or activate TGF-beta signaling by interacting with corepressors (e.g. Ski) or coactivators (e.g. CREB-binding protein (CBP)), respectively. Specifically, Ski has been shown to interfere with the interaction between Smad3 and CBP. However, it is unclear whether Ski competes with CBP for binding to Smads and whether they can interact with Smad3 at the same binding surface on Smad3. We investigated the interactions among purified constructs of Smad, Ski, and CBP in vitro by size-exclusion chromatography, isothermal titration calorimetry, and mutational ...


Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer Nov 2011

Mass Spectrometry Analysis Of Hiv-1 Vif Reveals An Increase In Ordered Structure Upon Oligomerization In Regions Necessary For Viral Infectivity, Jared Auclair, Karin Green, Shivender Shandilya, James Evans, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

HIV-1 Vif, an accessory protein in the viral genome, performs an important role in viral pathogenesis by facilitating the degradation of APOBEC3G, an endogenous cellular inhibitor of HIV-1 replication. In this study, intrinsically disordered regions are predicted in HIV-1 Vif using sequence-based algorithms. Intrinsic disorder may explain why traditional structure determination of HIV-1 Vif has been elusive, making structure-based drug design impossible. To characterize HIV-1 Vif's structural topology and to map the domains involved in oligomerization we used chemical cross-linking, proteolysis, and mass spectrometry. Cross-linking showed evidence of monomer, dimer, and trimer species via denaturing gel analysis and an ...


Viral Protease Inhibitors, Jeffrey Anderson, Celia Schiffer, Sook-Kyung Lee, Ronald Swanstrom Nov 2011

Viral Protease Inhibitors, Jeffrey Anderson, Celia Schiffer, Sook-Kyung Lee, Ronald Swanstrom

Celia A. Schiffer

This review provides an overview of the development of viral protease inhibitors as antiviral drugs. We concentrate on HIV-1 protease inhibitors, as these have made the most significant advances in the recent past. Thus, we discuss the biochemistry of HIV-1 protease, inhibitor development, clinical use of inhibitors, and evolution of resistance. Since many different viruses encode essential proteases, it is possible to envision the development of a potent protease inhibitor for other viruses if the processing site sequence and the catalytic mechanism are known. At this time, interest in developing inhibitors is limited to viruses that cause chronic disease, viruses ...


Mutation Patterns And Structural Correlates In Human Immunodeficiency Virus Type 1 Protease Following Different Protease Inhibitor Treatments, Thomas Wu, Celia Schiffer, Matthew Gonzales, Jonathan Taylor, Rami Kantor, Sunwen Chou, Dennis Israelski, Andrew Zolopa, W. Jeffrey Fessel, Robert Shafer Nov 2011

Mutation Patterns And Structural Correlates In Human Immunodeficiency Virus Type 1 Protease Following Different Protease Inhibitor Treatments, Thomas Wu, Celia Schiffer, Matthew Gonzales, Jonathan Taylor, Rami Kantor, Sunwen Chou, Dennis Israelski, Andrew Zolopa, W. Jeffrey Fessel, Robert Shafer

Celia A. Schiffer

Although many human immunodeficiency virus type 1 (HIV-1)-infected persons are treated with multiple protease inhibitors in combination or in succession, mutation patterns of protease isolates from these persons have not been characterized. We collected and analyzed 2,244 subtype B HIV-1 isolates from 1,919 persons with different protease inhibitor experiences: 1,004 isolates from untreated persons, 637 isolates from persons who received one protease inhibitor, and 603 isolates from persons receiving two or more protease inhibitors. The median number of protease mutations per isolate increased from 4 in untreated persons to 12 in persons who had received four ...


Curling Of Flap Tips In Hiv-1 Protease As A Mechanism For Substrate Entry And Tolerance Of Drug Resistance, Walter Scott, Celia Schiffer Nov 2011

Curling Of Flap Tips In Hiv-1 Protease As A Mechanism For Substrate Entry And Tolerance Of Drug Resistance, Walter Scott, Celia Schiffer

Celia A. Schiffer

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) protease is an essential viral protein that is a major drug target in the fight against Acquired Immune Deficiency Syndrome (AIDS). Access to the active site of this homodimeric enzyme is gained when two large flaps, one from each monomer, open. The flap movements are therefore central to the function of the enzyme, yet determining how these flaps move at an atomic level has not been experimentally possible.

RESULTS: In the present study, we observe the flaps of HIV-1 protease completely opening during a 10 ns solvated molecular dynamics simulation starting from ...


Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren Nov 2011

Exploring The Role Of The Solvent In The Denaturation Of A Protein: A Molecular Dynamics Study Of The Dna Binding Domain Of The 434 Repressor, Celia Schiffer, Volker Dötsch, Kurt Wuthrich, Wilfred Van Gunsteren

Celia A. Schiffer

Molecular dynamics simulations of the DNA binding domain of 434 repressor are presented which aim at unraveling the role of solvent in protein denaturation. Four altered solvent models, each mimicking various possible aspects of the addition of a denaturant to the aqueous solvent, were used in the simulations to analyze their effects on the stability of the protein. The solvent was altered by selectively changing the Coulombic interaction between water and protein atoms and between different water molecules. The use of a modified solvent model has the advantage of mimicking the presence of denaturant without having denaturant molecules present in ...


Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

Structural Analysis Of Human Immunodeficiency Virus Type 1 Crf01_Ae Protease In Complex With The Substrate P1-P6., Rajintha Bandaranayake, Moses Prabu-Jeyabalan, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.


Comparison Of Human Optimized Bacterial Luciferase, Firefly Luciferase, And Green Florescent Protein For Continuous Imaging Of Cell Cultures And Mouse Models., D Close, Re Hahn, S Patterson, Seung Baek, S Ripp, G Sayler Dec 2010

Comparison Of Human Optimized Bacterial Luciferase, Firefly Luciferase, And Green Florescent Protein For Continuous Imaging Of Cell Cultures And Mouse Models., D Close, Re Hahn, S Patterson, Seung Baek, S Ripp, G Sayler

Seung J Baek

No abstract provided.


Antidiabetic Properties Involved In Insulin Sensitivity Of Abutilon Indicum Sweet Are Mediated By Enhancement Of Adipocyte Differentiation And Activation Of Glut1 Promoter, C 88. Krisanapun, Seong-Ho Lee, P Peungvicha, R Temsiririrkkul, Seung Baek Dec 2010

Antidiabetic Properties Involved In Insulin Sensitivity Of Abutilon Indicum Sweet Are Mediated By Enhancement Of Adipocyte Differentiation And Activation Of Glut1 Promoter, C 88. Krisanapun, Seong-Ho Lee, P Peungvicha, R Temsiririrkkul, Seung Baek

Seung J Baek

No abstract provided.


Molecular Targets Of Apigenin In Colorectal Cancer Cells: Involvement Of P21, Nag-1 And P53., Yi Zhong, C Krisanapun, Seong-Ho Lee, T Nualsanit, C Sams, P Peungvicha, Seung Baek Nov 2010

Molecular Targets Of Apigenin In Colorectal Cancer Cells: Involvement Of P21, Nag-1 And P53., Yi Zhong, C Krisanapun, Seong-Ho Lee, T Nualsanit, C Sams, P Peungvicha, Seung Baek

Seung J Baek

Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase ...


Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek Oct 2010

Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek

Maria Cekanova MS, RNDr, PhD

Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a central role in cell differentiation, metabolism and tumorigenesis. We have investigated the therapeutic properties of 5-[[6-[(2-fluorophenyl)-methoxy]-2-napthalenyl]-methyl]-2,4-thiazolidinedione (MCC-555) a PPARgamma agonist in human colorectal cancer cells. To elucidate the molecular mechanism(s), by which MCC-555 exerts its effects on the human colorectal cancer cells, we have analyzed the expression of two pro-apoptotic proteins, Krüppel-like factor 4 (KLF4) and nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1). MCC-555-induced expression of the transcription factor, KLF-4 was blocked by a PPARgamma specific antagonist GW9662 in PPARgamma-dependent manner in HCT-116 cells. We ...


Epicatechin Gallate Suppresses Oxidative Stress-Induced Muc5ac Overexpression By Interaction With Epidermal Growth Factor Receptor, Hj Kim, Jh Ryu, Ch Kim, Jw Lim, Uy Moon, Gh Lee, Seung Baek, Jh Yoon Aug 2010

Epicatechin Gallate Suppresses Oxidative Stress-Induced Muc5ac Overexpression By Interaction With Epidermal Growth Factor Receptor, Hj Kim, Jh Ryu, Ch Kim, Jw Lim, Uy Moon, Gh Lee, Seung Baek, Jh Yoon

Seung J Baek

The goal of this study was to investigate the effect of epicatechin gallate (ECG), a component of green tea polyphenols, on the signal pathway for oxidative stress-induced intracellular reactive oxygen species (ROS) generation and MUC5AC overexpression in normal human nasal epithelial (NHNE) cells. Passage-2 NHNE cells were used, and ECG was administered before stimulation with exogenous hydrogen peroxide (H(2)O(2)). MUC5AC gene and protein levels were measured by real-time PCR and dot blot analysis. Western blot analysis and immunocytofluorescence study were performed for detecting the activity of epidermal growth factor receptor (EGFR). Exogenous H(2)O(2) increases ...


Activating Transcription Factor 2 (Atf2) Controls Tolfenamic Acid-Induced Atf3 Expression Via Map Kinase Pathways., Seong-Ho Lee, Jae Hoon Bahn, Nichelle Whitlock, Seung Baek Aug 2010

Activating Transcription Factor 2 (Atf2) Controls Tolfenamic Acid-Induced Atf3 Expression Via Map Kinase Pathways., Seong-Ho Lee, Jae Hoon Bahn, Nichelle Whitlock, Seung Baek

Seung J Baek

Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug associated with anti-tumorigenic and pro-apoptotic properties in animal and in vitro models of cancer. However, the underlying cellular mechanisms by which TA exerts its effects are only partially understood. Activating transcription factor 3 (ATF3) is a member of the ATF/CREB subfamily of the basic region-leucine zipper family and has been known as a tumor suppressor in human colorectal cancer cells. The present study was performed to observe whether ATF3 mediates TA-induced apoptosis and to elucidate the molecular mechanism of ATF3 transcription induced by TA. TA treatment and ectopic expression of ATF3 ...


(-)-Epigallocatechin-3-Gallate (Egcg) Post-Transcriptionally And Post-Translationally Suppresses The Cell Proliferative Protein Trop2 In Human Colorectal Cancer Cells., Seung Baek, Mugdha Sukhthankar, Saverio Alberti Jul 2010

(-)-Epigallocatechin-3-Gallate (Egcg) Post-Transcriptionally And Post-Translationally Suppresses The Cell Proliferative Protein Trop2 In Human Colorectal Cancer Cells., Seung Baek, Mugdha Sukhthankar, Saverio Alberti

Seung J Baek

BACKGROUND: TROP-2 is a tumor-promoting molecule that has been found to be overexpressed in many cancer cells, making it a plausible biomarker of carcinogenesis. The main aim of this study was to examine the effect of green tea catechins (namely, (-)-epigallocatechin-3-gallate; EGCG) on TROP-2 expression. MATERIALS AND METHODS: Western blot and RT-PCR were applied to assess TROP2 expression in colorectal cancer cells and tissues. RESULTS: Two different mechanisms were found to operate in diverse cell lines. In SW480 cells, EGCG affected the post-transcriptional processing of the TROP-2 mRNA, as this was quickly and specifically degraded in the presence of EGCG ...


Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek Jul 2010

Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek

Seong-Ho Lee

Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a central role in cell differentiation, metabolism and tumorigenesis. We have investigated the therapeutic properties of 5-[[6-[(2-fluorophenyl)-methoxy]-2-napthalenyl]-methyl]-2,4-thiazolidinedione (MCC-555) a PPARgamma agonist in human colorectal cancer cells. To elucidate the molecular mechanism(s), by which MCC-555 exerts its effects on the human colorectal cancer cells, we have analyzed the expression of two pro-apoptotic proteins, Krüppel-like factor 4 (KLF4) and nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1). MCC-555-induced expression of the transcription factor, KLF-4 was blocked by a PPARgamma specific antagonist GW9662 in PPARgamma-dependent manner in HCT-116 cells. We ...


Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek Jun 2010

Mcc-555-Induced Nag-1 Expression Is Mediated In Part By Klf4., Maria Cekanova, Seong-Ho Lee, Michael Mcentee, Seung Baek

Seung J Baek

Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a central role in cell differentiation, metabolism and tumorigenesis. We have investigated the therapeutic properties of 5-[[6-[(2-fluorophenyl)-methoxy]-2-napthalenyl]-methyl]-2,4-thiazolidinedione (MCC-555) a PPARgamma agonist in human colorectal cancer cells. To elucidate the molecular mechanism(s), by which MCC-555 exerts its effects on the human colorectal cancer cells, we have analyzed the expression of two pro-apoptotic proteins, Krüppel-like factor 4 (KLF4) and nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1). MCC-555-induced expression of the transcription factor, KLF-4 was blocked by a PPARgamma specific antagonist GW9662 in PPARgamma-dependent manner in HCT-116 cells. We ...