Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

Retina

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke Nov 2016

Rna Sequencing Analysis Of The Developing Chicken Retina, Christophe Langouet-Astrie*, Annamarie Meinsen*, Emily R. Grunwald*, Stephen Turner, Raymond A. Enke

Ray Enke Ph.D.

RNA sequencing transcriptome analysis using massively parallel next generation sequencing technology provides the capability to understand global changes in gene expression throughout a range of tissue samples. Development of the vertebrate retina requires complex temporal orchestration of transcriptional activation and repression. The chicken embryo (Gallus gallus) is a classic model system for studying developmental biology and retinogenesis. Existing retinal transcriptome projects have been critical to the vision research community for studying aspects of murine and human retinogenesis, however, there are currently no publicly available data sets describing the developing chicken retinal transcriptome. Here we used Illumina RNA sequencing (RNA-seq) analysis ...


The Identification Of Effectors Of Retinal Cell Fate Determination Through Single Cell Transcriptomics, Jillian Joanne Goetz Jan 2015

The Identification Of Effectors Of Retinal Cell Fate Determination Through Single Cell Transcriptomics, Jillian Joanne Goetz

Graduate Theses and Dissertations

The vertebrate retina is an exquisite model for neurogenesis, with its common pool of retinal progenitors differentiating into six neuronal cell types and one glial variety, each of which interconnects to form a simply organized yet complexly functioning sensory tissue. Our long-term aim is to determine the cell-autonomous genetic programs that drive retinogenesis, but identifying these signals is complicated by many factors. First, retinal progenitor cells generate the various retinal cell types at distinct but overlapping time points, potentially obscuring the progression of cell-intrinsic signals over time. Second, signals that drive the development of rare, but functionally critical, neuronal subtypes ...