Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Molecular Biology

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh Nov 2013

Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh

Biology Faculty Publications

Background: Alzheimer's disease (AD) is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42) polypeptides formed by the improper cleavage of amyloid precursor protein (APP) in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s) responsible for this neurodegeneration still remain elusive.

Methodology/Principal Findings: We have generated a transgenic Drosophila eye model where …


Choosing The Right Path: Enhancement Of Biologically Relevant Sets Of Genes Or Proteins Using Pathway Structure, Reuben Thomas, Julia M. Gohlke, Geffrey F. Stopper, Frederick M. Parham, Christopher J. Portier Jan 2009

Choosing The Right Path: Enhancement Of Biologically Relevant Sets Of Genes Or Proteins Using Pathway Structure, Reuben Thomas, Julia M. Gohlke, Geffrey F. Stopper, Frederick M. Parham, Christopher J. Portier

Biology Faculty Publications

A method is proposed that finds enriched pathways relevant to a studied condition using the measured molecular data and also the structural information of the pathway viewed as a network of nodes and edges. Tests are performed using simulated data and genomic data sets and the method is compared to two existing approaches. The analysis provided demonstrates the method proposed is very competitive with the current approaches and also provides biologically relevant results.


Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano May 2005

Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano

Biology Faculty Publications

The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing …


Interactions Involving The Human Rna Polymerase Ii Transcription/Nucleotide Excision Repair Complex Tfiih, The Nucleotide Excision Repair Protein Xpg, And Cockayne Syndrome Group B (Csb) Protein, Narayan Iyer, Michael S. Reagan, Kou-Juey Wu, Bertram Canagarajah, Errol C. Friedberg Feb 1996

Interactions Involving The Human Rna Polymerase Ii Transcription/Nucleotide Excision Repair Complex Tfiih, The Nucleotide Excision Repair Protein Xpg, And Cockayne Syndrome Group B (Csb) Protein, Narayan Iyer, Michael S. Reagan, Kou-Juey Wu, Bertram Canagarajah, Errol C. Friedberg

Biology Faculty Publications

The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome. At least two of the subunits of TFIIH (XPB and XPD proteins) are implicated in the disease xeroderma pigmentosum (XP). We have exploited the availability of the cloned XPB, XPD, p62, p44, and p34 genes (all …