Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular Biology

Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro May 2018

Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro

Senior Honors Projects

In recent years, advancements in genetic testing methods have revolutionized the medical field by enhancing the ability to identify persons with an inherited predisposition to cancer. According to the American Society for Clinical Oncology, individuals should undergo genetic testing when he or she meets the following criteria: the individual demonstrates familial history that indicates a predisposition to certain cancers, the test can be adequately interpreted, and the results will aid in the diagnosis, treatment, or management of the patient or additional family members at risk. Genetic testing can be done on samples of hair, skin, blood, amniotic fluid, or other ...


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding ...


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and ...


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) with knockout ...


Characterizing The Role Of Dna Repair Proteins In Telomere Length Regulation And Maintenance: Fanconi Anemia Complementation Group C Protein And 8-Oxoguanine Dna Glycosylase, David Beomjin Rhee Aug 2010

Characterizing The Role Of Dna Repair Proteins In Telomere Length Regulation And Maintenance: Fanconi Anemia Complementation Group C Protein And 8-Oxoguanine Dna Glycosylase, David Beomjin Rhee

Doctoral Dissertations

Telomeres are the chromosome end structures consisting of telomere-associated proteins and short tandem repeat sequences, TTAGGG, in humans and mice. Telomeres prevent chromosome termini from being recognized as broken DNA ends. The structural integrity of DNA including telomeres is constantly threatened by a variety of DNA damaging agents on a daily basis. To counteract the constant threats from DNA damage, organisms have developed a number of DNA repair pathways to ensure that the integrity of genome remains intact. A number of DNA repair proteins localize to telomeres and contribute to telomere maintenance; however, it is still unclear as to what ...


Tumor Response Tcf-4/Β-Catenin Regulatory Elements For Enhancing Cancer Gene Therapies, Saurabh Kumar Gupta Jan 2005

Tumor Response Tcf-4/Β-Catenin Regulatory Elements For Enhancing Cancer Gene Therapies, Saurabh Kumar Gupta

Theses and Dissertations in Biomedical Sciences

Mutations in the adenomatous polyposis coli gene are frequently associated with progression of colon carcinoma and most other types of epithelial carcinomas. This usually results in stabilization of β-catenin protein levels, followed by transactivation of Tcf-4/β-catenin responsive genes. The effectiveness of a Tcf-4/β-catenin transcriptional enhancer element in combination with a c-fos or carcinoembryonic antigen promoter was tested for its ability to act as a tumor specific regulator of gene expression in a panel of human tumor and normal cell lines. Luciferase reporter assays indicated enhanced activity of the Tcf-4/β-catenin transcriptional element only in tumor cell lines, with ...


Identification And Characterization Of Genes Associated With V-Jun Induced Cell Transformation, Martin Toralballa Hadman Apr 1995

Identification And Characterization Of Genes Associated With V-Jun Induced Cell Transformation, Martin Toralballa Hadman

Biological Sciences Theses & Dissertations

The v-jun oncogene was initially identified as the causative agent for fibrosarcomas in chickens. Studies show that overexpression of v-Jun proteins transforms chicken embryo fibroblasts (CEF) in vitro, and forms tumors in chickens in vivo. The mechanisms for this are not clearly defined. Conceivably, overexpression of an unregulated transcription factor would cause cell transfonnation by illicit regulation of its target genes. In support of this, we show that in vivo v-Jun complexes exhibit differential binding to in vitro generated AP-1 and 'AP-1 like' target sequences, suggesting that the pattern of target gene expression is altered during cell transformation. With this ...