Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 252

Full-Text Articles in Molecular Biology

Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago Jan 2019

Protein Degradation Regulates Phospholipid Biosynthetic Gene Expression In Saccharomyces Cerevisiae, Bryan Salas-Santiago

Doctoral Dissertations

Transcriptional regulation of most phospholipid biosynthetic genes in Saccharomyces cerevisiae is coordinated by inositol and choline. Inositol affects phosphatidic acid (PA) intracellular levels. Opi1p interacts physically with PA and is the main repressor of the phospholipid biosynthetic genes. It is localized in the endoplasmic reticulum (ER) bound to the ER membrane protein Scs2p. When PA levels drop, Opi1p is translocated into the nucleus repressing most phospholipid biosynthetic genes. The OPI1 locus was identified in a screen looking for overproduction and excretion of inositol (Opi-). Opi- mutants are generally associated with a defect in repression of the ...


Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman Dec 2018

Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman

Boise State University Theses and Dissertations

Parkinson’s Disease (PD) is an idiopathic disorder with no known cure. With number of cases steadily rising around the world, it is imperative to turn to the underlying cellular and molecular mechanisms of the disease manifestation and neurodegeneration to craft novel modes of therapy. VPS35 is one of the few genes that have identified and definitively linked to familial PD. The particular mutation that has been associated is known to cause dysfunction of a key cellular process known as autophagy. This process is primarily responsible for clearance of unwanted, damaged or misfolded proteins, among other things. Our study reveals ...


Genetic And Epigenetic Investigations On Pulmonary Hypertension Syndrome In Meat Type- Chickens, Khaloud Alzahrani Dec 2018

Genetic And Epigenetic Investigations On Pulmonary Hypertension Syndrome In Meat Type- Chickens, Khaloud Alzahrani

Theses and Dissertations

This dissertation presents a collection of studies that investigate the genetic and epigenetic associations to ascites phenotype in broiler chickens. Ascites is a significant metabolic disease associated with fast-growing meat-type chickens (broilers) and is a terminal result of pulmonary hypertension syndrome PHS. It is a multi-factorial syndrome caused by interactions between genetic, physiological, environmental, and managemental factors. It was estimated that ascites accounts for losses of about US$1 billion annually worldwide and for over 25% of broilers mortality. Although traditional and molecular genetic methods in the selection and in performance improvements, has greatly reduced ascites frequency, yet it has ...


Identification Of Deubiquitinating Enzymes That Control The Cell Cycle In Saccharomyces Cerevisiae, Claudine E. Mapa Nov 2018

Identification Of Deubiquitinating Enzymes That Control The Cell Cycle In Saccharomyces Cerevisiae, Claudine E. Mapa

GSBS Dissertations and Theses

A large fraction of the proteome displays cell cycle-dependent expression, which is important for cells to accurately grow and divide. Cyclical protein expression requires protein degradation via the ubiquitin proteasome system (UPS), and several ubiquitin ligases (E3) have established roles in this regulation. Less is understood about the roles of deubiquitinating enzymes (DUB), which antagonize E3 activity. A few DUBs have been shown to interact with and deubiquitinate cell cycle-regulatory E3s and their protein substrates, suggesting DUBs play key roles in cell cycle control. However, in vitro studies and characterization of individual DUB deletion strains in yeast suggest that these ...


The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang Aug 2018

The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang

Arts & Sciences Electronic Theses and Dissertations

The bone marrow niche is an important microenvironment for the regulation of normal and malignant hematopoiesis. The first discovered niche component is mesenchymal stromal cells, which are the major source for the production and secretion of multiple niche factors. Mesenchymal stromal cells are heterogeneous and various transgenes have been used to target non-identical but overlapping subpopulations. To further characterize the heterogeneity of mesenchymal stromal cells, we tested the targeting specificity of three tissue-specific Cre-recombinase transgenes. We show that in addition to osteoblasts, Ocn-Cre targets a majority of Cxcl12-abundant reticular (CAR) cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset ...


Characterization Of The Celf6 Rna Binding Protein: Effects On Mouse Vocal Behavior And Biochemical Function, Michael A. Rieger Aug 2018

Characterization Of The Celf6 Rna Binding Protein: Effects On Mouse Vocal Behavior And Biochemical Function, Michael A. Rieger

Arts & Sciences Electronic Theses and Dissertations

Behavior in higher eukaryotes is a complex process which integrates signals in the environment, the genetic makeup of the organism, and connectivity in the nervous system to produce extremely diverse adaptations to the phenomenon of existence. Unraveling the subcellular components that contribute to behavioral output is important for both understanding how behavior occurs in an unperturbed state, as well as understanding how behavior changes when the underlying systems that generate it are altered. Of the numerous molecular species that make up a cell, the regulation of messenger RNAs (mRNAs), the coding template of all proteins, is of key importance to ...


Production Of A Candidate Recombinant Protein Vaccine For Mannheimia Haemolytica In Lettuce And Tobacco Chloroplasts, Coby K. Martin Jul 2018

Production Of A Candidate Recombinant Protein Vaccine For Mannheimia Haemolytica In Lettuce And Tobacco Chloroplasts, Coby K. Martin

Electronic Thesis and Dissertation Repository

The cattle industry worldwide is ravaged by bovine respiratory disease (BRD), a bacterial disease caused by Mannheimia haemolytica. Recent efforts to design vaccines against M. haemolytica focus on a virulence factor, leukotoxin, in addition to surface lipoproteins. Plant-based protein production is a safe and inexpensive alternative to traditional methods. Edible vaccines deliver antigens to pharyngeal tissues, which can provide local immunization against M. haemolytica prior to its progression into the lungs. In this project, a chimeric protein containing M. haemolytica antigens was produced in tobacco chloroplasts as a candidate edible vaccine for BRD. Attempts were made to transform lettuce chloroplasts ...


Unravelling The Layers Of Cell Wall Synthesis And Function In Rice, Ritu Mihani May 2018

Unravelling The Layers Of Cell Wall Synthesis And Function In Rice, Ritu Mihani

Theses and Dissertations

The plant cell wall is of critical importance to plant growth and survival, functioning in maintaining structural integrity, supporting cell expansion, and acting as the first line of defense in response to biotic and abiotic stresses. The major components of the cell wall are cellulose, hemicelluloses, lignin, and pectin. Recent focus on the transcriptional machinery regulating cell wall biosynthesis in plants has revealed many key transcription factors responsible for orchestrating cell wall deposition. However, many of these TFs act redundantly and work coherently with a suite of TFs to activate the cell wall biosynthetic machinery. Heterologous expression of TFs is ...


Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings May 2018

Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

Methanogenesis is the biological production of methane. Only anaerobic archaea known as methanogens are capable of such a metabolic feat. They have strict living conditions and substrate sources which determine their rate of metabolism. This is of particular importance from a greenhouse gas reduction perspective or biogas capturing perspective. One of the best ways to optimize methanogen methane production is via genetic manipulation. The current procedures are timely though, therefore a faster cloning processes should be developed. The objective of this study was to optimize a premade genetic transformation kit known as the Gibson Kit. The Gibson Kit was supposed ...


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


The Synthesis And Function Of The Peritrophic Matrix In Drosophila Melanogaster, Sean Conway Apr 2018

The Synthesis And Function Of The Peritrophic Matrix In Drosophila Melanogaster, Sean Conway

Dissertations (2009 -)

Maintenance of functional barrier structures separating an organism from and regulating its interaction with the environment is critical for many aspects of fitness. Arguably, the most dynamic interface between an animal and its environment is the gut, as the organism must balance the primary functions, digestion and nutrient acquisition, with several homeostatic and defensive systems including pathogen defense, microbiome maintenance and stem cell renewal. Many animals secrete extracellular barrier structures along their guts to organize and modulate these interactions, including intestinal mucosal secretions in humans and a semi-permeable structure in insects called the peritrophic matrix (PM). In Drosophila, the PM ...


Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy Jan 2018

Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy

Chemical & Biological Engineering Graduate Theses & Dissertations

Microorganisms inhabit every extreme location of our planet. In their journey through the ages, they have been able to incredibly adapt to a myriad of different environmental conditions. A key mechanism for their success has been their ability to respond to environmental and nutritional changes through regulatory programs primarily encoded at the transcriptional level. This adaptability to new environments is what encourages scientists to believe in engineering a biological revolution that will transform our lives due to its potential to result in innovative approaches for bioremediation, sustainable energy production, and biomedical therapies. This thesis explores the potential of the phenomenon ...


Crispr-Assisted Interrogation And Engineering Of Metabolic Pathways, Marcelo Colika Bassalo Jan 2018

Crispr-Assisted Interrogation And Engineering Of Metabolic Pathways, Marcelo Colika Bassalo

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

Since Mendel’s work established the basis of inheritance in the late 1800s, multiple decades of research characterized monogenic traits across all domains of life. Yet, we still have a fairly limited knowledge on the genotype behind the vast majority of phenotypes. It is now evident that discrete biological functions can rarely be linked to a single gene. Further, these multigenic traits are often interconnected via a sophisticated and robust metabolic and regulatory network, selected by evolution in order to optimally distribute resources. The complexity of these multigenic traits challenges traditional genetic tools, broadly limiting our capability to understand and ...


Epigenetic Mechanisms Governing Behavioral Reprogramming In The Ant Camponotus Floridanus, Riley John Graham Jan 2018

Epigenetic Mechanisms Governing Behavioral Reprogramming In The Ant Camponotus Floridanus, Riley John Graham

Publicly Accessible Penn Dissertations

Eusocial insect colonies divide behaviors among specialist groups called castes. In some species, caste identity is determined by the interaction of endogenous (e.g. genomic) and exogenous (e.g. juvenile hormone from nurses) signals during larval development, suggesting epigenetic mechanisms underlie plastic traits tied to caste identity. Previous work demonstrated a link between patterns of histone H3 lysine 27 acetylation (H3K27ac) and caste-specific gene expression in Major and Minor workers of the ant Camponotus floridanus, and we hypothesized caste-specific behaviors such as foraging may be similarly regulated by histone acetylation. To test this hypothesis, we fed mature (~30d old) Majors ...


Reprogramming The Retina: Next Generation Strategies Of Retinal Neuroprotection And Gene Therapy Vector Potency Assessment, Devin Scott Mcdougald Jan 2018

Reprogramming The Retina: Next Generation Strategies Of Retinal Neuroprotection And Gene Therapy Vector Potency Assessment, Devin Scott Mcdougald

Publicly Accessible Penn Dissertations

Mutations within over 250 known genes are associated with inherited retinal degeneration. Clinical success following gene replacement therapy for Leber’s congenital amaurosis type 2 establishes a platform for the development of downstream treatments targeting other forms of inherited and acquired ocular disease. Unfortunately, several challenges relevant to complex disease pathology and limitations of current gene transfer technologies impede the development of gene replacement for each specific form of retinal degeneration. Here we describe gene augmentation strategies mediated by recombinant AAV vectors that impede retinal degeneration in pre-clinical models of acquired and inherited vision loss. We demonstrate distinct neuroprotective effects ...


Chromatin Remodeling Dynamics During Brown Adipogenesis, Suzanne Natalie Shapira Jan 2018

Chromatin Remodeling Dynamics During Brown Adipogenesis, Suzanne Natalie Shapira

Publicly Accessible Penn Dissertations

Brown adipose tissue (BAT) is specialized to expend energy through the action of the mitochondrial uncoupling protein UCP1. Increasing brown fat mass or activity through genetic or chemical manipulation in mice suppresses obesity and its comorbidities; as such, there is great interest in developing approaches to increase the amount and/or function of brown fat to combat metabolic disorders. My thesis work aimed to dissect the molecular mechanisms by which the helix- loop-helix transcription factor Early B-Cell Factor 2 (EBF2) regulates brown adipocyte commitment and terminal differentiation. Through analysis of tissue-specific knockout mouse models, we found that EBF2 is required ...


Β Cell Replacement Therapy: A Novel Application For Targeted Epigenetic Editing, Kristy Ou Jan 2018

Β Cell Replacement Therapy: A Novel Application For Targeted Epigenetic Editing, Kristy Ou

Publicly Accessible Penn Dissertations

Pancreatic β cells are the exclusive source of insulin, which normalizes blood glucose levels under hyperglycemic conditions. In 2015, over 252,000 deaths in the United States were contributed by diabetes, a family of disorders directly linked to defects in the pancreatic β cells. β cell deficiency or dysfunction leads to insufficient insulin secretion, resulting in chronic hyperglycemia and increased risk for severe health complications. Although severely diabetic patients can clinically manage their glucose levels with mealtime delivery of insulin analogues, many still experience potentially life-threatening hypoglycemic episodes due to erroneous insulin administration. Only β cell replacement therapy, through the ...


Using Genomic And Gene Expression Methods To Understand The Phenotypic Response Of Soybean To Sudden Death Syndrome Caused By Fusarium Virguliforme, Alexander Stephen Luckew Jan 2018

Using Genomic And Gene Expression Methods To Understand The Phenotypic Response Of Soybean To Sudden Death Syndrome Caused By Fusarium Virguliforme, Alexander Stephen Luckew

Graduate Theses and Dissertations

Soybean sudden death syndrome (SDS) is one of the most important soybean diseases in the Midwestern United States, leading to average losses of $396 million per year from 1996 to 2015. The causal agent of SDS, soilborne fungus Fusarium virguliforme (Fv), causes root rot symptoms and releases phytotoxins taken up by the plant to produce chlorosis and necrosis in the leaves. The main management practice used to reduce the impact of SDS is planting resistant soybean cultivars. Resistance to SDS is known to be quantitative with 88 known quantitative trait loci (QTL) based on Soybase.org. Many of these QTL ...


Molecular Mechanisms Governing Plant Parasitic Nematode Signaling And Host Parasitism, Stacey Nicola Barnes Jan 2018

Molecular Mechanisms Governing Plant Parasitic Nematode Signaling And Host Parasitism, Stacey Nicola Barnes

Graduate Theses and Dissertations

Pathogen infection of crops causes large-scale annual yield losses for farmers worldwide and hinders global efforts to provide adequate amounts of nutrition for the ever-growing human population. Plant-parasitic nematodes (PPN) are among some of the most devastating pathogens due to their ability to parasitize an expansive variety of agriculturally important crops. In order to identify ways to attenuate PPN infection and limit yield losses it is vital that we increase our understanding of host-PPN interactions. Here we investigate the molecular mechanisms that are occurring both within PPN and at the interface between PPN and their host plants.

Research into PPN-derived ...


Role Of Sirna Pathway In Epigenetic Modifications Of The Drosophila Melanogaster X Chromosome, Nikita Deshpande Jan 2018

Role Of Sirna Pathway In Epigenetic Modifications Of The Drosophila Melanogaster X Chromosome, Nikita Deshpande

Wayne State University Dissertations

Eukaryotic genomes are organized into large domains of coordinated regulation. The role of small RNAs in formation of these domains is largely unexplored. An extraordinary example of domain-wide regulation is X chromosome compensation in Drosophila melanogaster males. This process occurs by hypertranscription of genes on the single male X chromosome. Extensive research in this field has shown that the Male Specific Lethal (MSL) complex binds X-linked genes and modifies chromatin to increase expression. The components of this complex, and their actions on chromatin, are well studied. In contrast, the mechanism that results in exclusive recruitment to the X chromosome is ...


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding ...


Emergence Of New Metabolic Pathways In Escherichia Coli, Michael Kristofich Jan 2018

Emergence Of New Metabolic Pathways In Escherichia Coli, Michael Kristofich

Undergraduate Honors Theses

Catalytic promiscuity provides a starting point for the evolution of new enzymes. Taking this concept further, a series of promiscuous enzymes may assemble to form the basis of a new metabolic pathway (termed “serendipitous pathway”) that may emerge and become more efficient in adapting bacterial cells that require it to grow. The Copley lab at the University of Colorado at Boulder has been observing genetic changes that improve growth of Escherichia coli cells that lack the essential gene pdxB. These genetic changes are believed to improve the flux of metabolites through one or more serendipitous pathways that make up for ...


Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli Dec 2017

Identification Of Factors Involved In 18s Nonfunctional Ribosomal Rna Decay And A Method For Detecting 8-Oxoguanosine By Rna-Seq, Kelly A. Limoncelli

GSBS Dissertations and Theses

The translation of mRNA into functional proteins is essential for all life. In eukaryotes, aberrant RNAs containing sequence features that stall or severely slow down ribosomes are subject to translation-dependent quality control. Targets include mRNAs encoding a strong secondary structure (No-Go Decay; NGD) or stretches of positively-charged amino acids (Peptide-dependent Translation Arrest/Ribosome Quality Control; PDTA/RQC), mRNAs lacking an in-frame stop codon (Non-Stop Decay; NSD), or defective 18S rRNAs (18S Nonfunctional rRNA Decay; 18S NRD). Previous work from our lab showed that the S. cerevisiae NGD factors DOM34 and HBS1, and PDTA/RQC factor ASC1, all participate in the ...


Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone Dec 2017

Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone

Theses and Dissertations

Foodborne illnesses are a leading cause of infectious diseases in the world. Among enteric organisms Salmonella is a key pathogen. It’s high prevalence in poultry and other food-animal sources make it imperative to study. Salmonella has the ability to modify its genetic content with help of mobile genetic elements such as plasmids. Incompatibiltiy group 1 (IncI1) plasmids are commonly reported in Salmonella. This study evaluates role on IncI1 plasmids in antimicrobial resistance and virulence in Salmonella. Genetic determinants of resistance and virulence are noted among our IncI1-containing Salmonella isolates. These genetic elements are also transferable and reported to carry ...


New Insights Into The Role Of Antimicrobials Of Xenorhabdus In Interspecies Competition, Kristin Jean Ciezki Aug 2017

New Insights Into The Role Of Antimicrobials Of Xenorhabdus In Interspecies Competition, Kristin Jean Ciezki

Theses and Dissertations

Xenorhabdus spp. are symbionts of entomopathogenic nematodes and pathogens of susceptible insects. The nematodes penetrate the insect midgut to enter the hemocoel where Xenorhabdus bacteria are released, transitioning to their pathogenic stage. During nematode invasion microbes from the insect gut translocate into the hemocoel. In addition, different species of nematodes carrying specific strains of Xenorhabdus can invade a single insect. Xenorhabdus spp thereby engage in competition with both related strains and nonrelated gut microbes. In complex media Xenorhabdus spp produce diverse antimicrobial compounds whose functions in biological systems remain poorly understood. R-type bacteriocins are contractile phage-tail-like structures that are bactericidal ...


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and ...


Genome Wide Association And Next Generation Sequencing Approaches To Map Determinants Of Ascites In Broiler Chickens, Shatovisha Dey Aug 2017

Genome Wide Association And Next Generation Sequencing Approaches To Map Determinants Of Ascites In Broiler Chickens, Shatovisha Dey

Theses and Dissertations

These studies have investigated different candidate genomic regions for their contributions to ascites in broilers. Ascites syndrome is a manifestation of idiopathic pulmonary arteriole hypertension that concerns the poultry industry worldwide. Investigations have demonstrated the disease to be genetically regulated and to exhibit moderate to high heritabilities. Although previous studies have indicated a few chromosomes to be involved with ascites, no genes have been identified to date with direct links to the disease. This dissertation presents a collection of studies that determine the genomic and genetic interactions for regions on chromosome 2 and 9 for ascites phenotypes in broiler chickens ...


Comprehensive Assessments Of The Genetic Determinants In Salmonella Typhimurium For Fitness Under Host Stressors: Oxidative Stress And Iron Restriction, Sardar Abdullah Aug 2017

Comprehensive Assessments Of The Genetic Determinants In Salmonella Typhimurium For Fitness Under Host Stressors: Oxidative Stress And Iron Restriction, Sardar Abdullah

Theses and Dissertations

Salmonella is an intracellular pathogen that infects a wide range of hosts. The infected host utilizes reactive oxygen species (ROS) and iron-restriction to eliminate the pathogen. We used proteogenomics to determine the candidate genes and proteins that have a role in resistance of S. Typhimurium to H2O2. For Tn-seq, a highly saturated Tn5 library was grown in vitro under either 2.5 (H2O2L) or 3.5 mM H2O2 (H2O2H). We identified two sets of overlapping genes that are required for resistance of S. Typhimurium to H2O2L and H2O2H, and the results were validated via phenotypic evaluation of 50 selected mutants ...


Single-Molecule Studies Of Replication Kinetics In Response To Dna Damage, Divya Ramalingam Iyer May 2017

Single-Molecule Studies Of Replication Kinetics In Response To Dna Damage, Divya Ramalingam Iyer

GSBS Dissertations and Theses

In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions ...


Evolutionary Genetic Aspects Of Host Association In Generalist Ectoparasites, Benoit Talbot May 2017

Evolutionary Genetic Aspects Of Host Association In Generalist Ectoparasites, Benoit Talbot

Electronic Thesis and Dissertation Repository

Despite the use of the host for dispersal by most parasite species, the extremely loose relationship typical between highly mobile hosts and generalist ectoparasites may lead to very different gene flow patterns between the two, leading in turn to different spatial genetic structure, and potentially different demographic history. I examined how similar gene flow patterns are between Cimex adjunctus, a generalist ectoparasite of bats present throughout North America, and two of its key bat hosts. I first analyzed the continent-scale genetic structure and demographic history of C. adjunctus and compared it to that of two of its hosts, the little ...