Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

Series

PDF

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 92

Full-Text Articles in Molecular Biology

Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk Apr 2022

Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk

Honors Scholars Collaborative Projects

All eukaryotic cells require that transcribed mRNAs undergo export form the nucleus to the cytoplasm where they can be translated into proteins. This process requires a host of proteins which are conserved between the unicellular budding yeast, S. cerevisiae, and humans. During this process, Mex67 and other associated proteins facilitate the mRNA to travel across the nuclear pore complex (NPC), doorways embedded in the nuclear envelope. Upon the exit of mRNA, Mex67 is released and recycled back into the nucleus to facilitate the export of more mRNA. This occurs through the action of Dbp5, whose activity is regulated through …


Investigation Of Oncogenic Ras And Endoplasmic Reticulum-Mitochondria Calcium Flux And Their Relationship In The Context Of Tumorigenesis, Emma Anderson Apr 2022

Investigation Of Oncogenic Ras And Endoplasmic Reticulum-Mitochondria Calcium Flux And Their Relationship In The Context Of Tumorigenesis, Emma Anderson

Senior Honors Theses

Intracellular calcium as a signaling molecule is a pervasive feature of cellular pathways, especially those that manage internal homeostasis and transitions through the cell cycle, so much so that regulated, responsive calcium flux between the endoplasmic reticulum (ER) and the mitochondria has been suggested to play a major role in cancer development. Another factor commonly implicated in tumorigenesis is RAS, an oncogene that controls signaling for many pathways that are also regulated by calcium. While both calcium and oncogenic RAS signaling are implicated in cancer development, possible links between them have yet to be determined. The identification of these links …


Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk, Rebecca Adams Phd Jan 2022

Exploring The Functionality Of Putative Bop3 Post-Translational Modifications, Liliya Tkachuk, Rebecca Adams Phd

Belmont University Research Symposium (BURS)

All eukaryotic cells require that transcribed mRNAs undergo export form the nucleus to the cytoplasm where they can be translated into proteins. This process requires a host of proteins which are conserved between the unicellular budding yeast, S. cerevisiae, and humans. During this process, Mex67 and other associated proteins facilitate the mRNA to travel across the nuclear pore complex (NPC), doorways embedded in the nuclear envelope. Upon the exit of mRNA, Mex67 is released and recycled back into the nucleus to provide the export of more mRNA. This release occurs through the action of Dbp5, whose activity is regulated …


Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman Sep 2021

Mutations In Several Auxin Biosynthesis Genes And Their Effects On Plant Phenotypes In Arabidopsis, Gabriela Hernandez, Lauren Huebner, Bethany Karlin Zolman

Undergraduate Research Symposium

Auxins are important hormones in plants that regulate growth and development. Disruptions in the auxin biosynthesis pathway result in morphological changes in phenotypes in the model plant Arabidopsis thaliana, including differences in root and leaf formation. Mutations in the Tryptophan Aminotransferase of Arabidopsis (TAA1) and YUCCA (YUC4) genes interfere with the plant's ability to synthesize Indole-3-acetic acid (IAA), the primary auxin involved in plant development. IBR1 and IBR3 act in the multistep conversion of indole-3-butyric acid (IBA) to IAA. ILL2, IAR3, and ILR1 hydrolyze IAA-amino acid conjugates into free IAA. The goal of …


Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike Aug 2021

Development Of High Value Oil Traits Using The Model Oilseed Crop Camelina Sativa, Evan Updike

Department of Biochemistry: Dissertations, Theses, and Student Research

Plant oils are an important source of food, fuel, and feed in our society today. The oil found in the seeds of plants is composed almost entirely of triacylglycerol (TAG) molecules, which consist of three fatty acids esterified to a glycerol backbone. As crude oil supplies decline, vegetable oils are gaining traction as a renewable substitute to petroleum-based materials in fuels, lubricants, and specialty oleochemicals. However, as it currently stands vegetable oils do not possess the properties necessary to fill the void of a petroleum free world.

To address this problem, plant biotechnologists have done extensive work on genetic engineering …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem May 2021

New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem

Pharmacy

Diabetes mellitus (DM) is a devastating metabolic disease. Recently, the cross-talk between insulin-secreting-β-cells and various organs has sparked much interest. SerpinB1 emerged as a novel hepatokine inducing β-cell proliferation. However, its role in type-2-DM (T2DM) patients has not been adequately studied. This study was designed to investigate its circulating levels in subjects with/without T2DM, and to study its association with β-cell function, as well as various glycemic-control and lipid-profile parameters. Anthropometric data and biochemical markers including fasting plasma glucose (FPG), HbA1C % and lipid profile parameters were measured in 55 T2DM patients, as well as 30 healthy nondiabetic subjects. Serum …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal Jul 2020

A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal

Pharmacy

Aims: Serine protease inhibitor B1 (SerpinB1) is a neutrophil elastase inhibitor that has been proved to be associated with type 2 diabetes mellitus and pancreatic β-cell proliferation. In this study, we investigated 2 SERPINB1 SNPs, rs114597282 and rs15286, regarding their association with diabetes risk and various anthropometric and biochemical parameters in Egyptian type 2 diabetic patients.

Materials and Methods: A total of 160 subjects (62 control and 98 type 2 diabetic patients) participated in this study. Various anthropometric and biochemical parameters were assessed. Genotyping assay for the two SNPs was done using TaqMan genotyping assays. The association of rs15286 variants …


Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith May 2020

Identifying The Link Between Non-Coding Regulatory Rnas And Phenotypic Severity In A Zebrafish Model Of Gmppb Dystroglycanopathy, Grace Smith

Honors College

Muscular Dystrophy (MD) is characterized by varying severity and time-of-onset by individuals afflicted with the same forms of MD, a phenomenon that is not well understood. MD affects 250,000 individuals in the United States and is characterized by mutations in the dystroglycan complex. gmppb encodes an enzyme that glycosylates dystroglycan, making it functionally active; thus, mutations in gmppb cause dystroglycanopathic MD1 . The zebrafish (Danio rerio) is a powerful vertebrate model for musculoskeletal development and disease. Like human patients, gmppb mutant zebrafish present both mild and severe phenotypes. In order to understand the molecular mechanisms involved, we performed high-throughput RNA …


An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte Apr 2020

An Analysis Of Crispr-Cas Gene Editing In Agriculture, Ashley Laliberte

Honors Scholar Theses

The CRISPR-Cas system is a promising form of gene editing, especially for the agriculture industry. The ability to make single-nucleotide edits within a gene of interest, without the need to introduce foreign DNA, is a powerful tool for designing healthier and more efficient crops and food animals. This system provides opportunity for increased nutritional value, decreased food waste, and more economically and environmentally sustainable food production. Though this biotechnology is facing mechanistic limitations due to off-target effects and inefficient homology-directed repair, vast improvements have already been made to improve its efficacy. The CRISPR-Cas system is already the most advanced form …


Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott Jan 2020

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. We researched tester strains B. subtilis and E. coli from the soil isolates obtained. We further verified if the isolates were common antibiotic bacteria. Unfortunately, this project heavily relied on biochemical tests, colony morphology, and Gram stains to reject or fail to reject our hypothesis. Our goal was to discover new antibiotic-producing bacteria that could be beneficial in combating ESKAPE strains. A proper PCR and DNA extraction would be required …


Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott Jan 2020

Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

Multidrug-resistant pathogens are the leading cause of nosocomial infection, which killed more than 30,000 people in the United States every year. Among these, ESKAPE strains bugs, which comprise six highly drug-resistant bacteria, pose the greatest challenge to the healthcare system. In order to fight the antibiotic-resistant crises, novel antibiotic-producers must be discovered. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. Pseudomonas was revealed to produce a zone of inhibition against Bacillus subtilis on LB media. The next step …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham Jan 2020

Investigation Of The Phenotypic Effect Of Mutating A Highly-Conserved Cysteine Residue In The Rna Polymerase Beta Prime Subunit Of E. Coli Rna Polymerase, Meg Dillingham

Mahurin Honors College Capstone Experience/Thesis Projects

All bacteria contain a multi-subunit RNA polymerase (RNAPs) that is essential for gene expression. Because of the centrality of these enzymes in cellular life, the structure and function of the various subunits is intensely studied. The primary sequence of the RNAP β’ subunit contains five cysteine residues that are highly conserved. Four of the cysteines coordinate a zinc atom and form the beta prime subunit zinc binding domain (ZBD). Mutation of any one of the ZBD cysteines is lethal to the cell. However, the role of the fifth residue (C58), which is located upstream of the ZBD cysteines, has not …


How A Cell Knows Where To Divide: Oscillation Of Mind In Vivo, Colby Ferreira Apr 2019

How A Cell Knows Where To Divide: Oscillation Of Mind In Vivo, Colby Ferreira

Senior Honors Projects

Over two-million people in the United States are infected by antibiotic resistant bacteria each year. Of this number 23,000 die from these infections and other complications. Due to this, novel antibiotic targets are constantly being investigated. One process in prokaryotes that holds promise is cellular division. Bacterial cells grow and reproduce using a series of proteins known as the cell division machinery. This machinery enables the division of the parental cell into two identical daughter cells. The cell division machinery is similar between bacterial taxa, making it an ideal target for new classes of antibiotics. Therefore, understanding the molecular mechanisms …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott May 2018

Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of Escherichia coli and Meiothermus ruber proC genes using the complementation assay. In this research project, mutants of varying severity to the functional state of the protein were developed. The results showed that two or more amino acid deletions reduced or eliminated ProC function. Amino acid substitutions, on the other hand, were not severe enough to impact ProC function. Double and triple mutants …


Crispr Gene Editing In The Sea Squirt, Ciona Intestinalis, Evelyn Siler, Steven Irvine May 2018

Crispr Gene Editing In The Sea Squirt, Ciona Intestinalis, Evelyn Siler, Steven Irvine

Senior Honors Projects

Genetic manipulation has come a long way in the past ten years alone. Scientists have had access to gene editing techniques for decades, but until recently these methods have proven to be expensive and unpredictable. However, thanks to the development of a new, more efficient genome editing strategy called CRISPR/Cas9, more aggressive progress can now be made in genetics research.

CRISPR is not a machine or a physical tool, but rather it is a system that involves introducing a protein into a cell, along with a DNA segment that will attract the protein to a desired location on the DNA. …


Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro May 2018

Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro

Senior Honors Projects

In recent years, advancements in genetic testing methods have revolutionized the medical field by enhancing the ability to identify persons with an inherited predisposition to cancer. According to the American Society for Clinical Oncology, individuals should undergo genetic testing when he or she meets the following criteria: the individual demonstrates familial history that indicates a predisposition to certain cancers, the test can be adequately interpreted, and the results will aid in the diagnosis, treatment, or management of the patient or additional family members at risk. Genetic testing can be done on samples of hair, skin, blood, amniotic fluid, or other …


Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson Mar 2018

Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson

Honors Theses

Copy number variations (CNVs) are large insertions, deletions, and duplications in the genome that vary between individuals in a species. These variations are known to impact a broad range of phenotypes from molecular-level traits to higher-order clinical phenotypes. CNVs have been linked to complex traits in humans such as autism, attention deficit hyperactivity disorder, nervous system disorders, and early-onset extreme obesity. In this study, whole-genome sequence was obtained from 72 founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC) in Clay Center, Nebraska. This included 24 boars (12 Duroc and 12 Landrace) and …


Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott Jan 2018

Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes b3725, b3726, b3727, b3728 and Mrub_2518, Mrub_2519, Mrub_2520 and Mrub_2521 (KEGG map number 02010). We predict that these genes encode the components of a Phosphate ABC transporter: Orthologous genes Mrub_2518 (DNA coordinates 2565359..2566438) and b3728 encodes the periplasmic phosphate binding component; Orthologous genes Mrub_2519 (DNA coordinates 2566499..2567485) and b3727, and Mrub_2520 (DNA coordinates 2567496..2568326) and b3726 encode for the two transmembrane proteins; Orthologous genes Mrub_2521 (DNA coordinates 2568338..2569159) and b3725 encode for the ATP binding protein within the cytoplasm. Within the two species, M. ruber and E. coli, …


Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott Jan 2018

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott Jan 2018

Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 and Mrub_2124 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2120 (DNA coordinates 2169247-2170416 on the reverse strand) encodes the branched-chain amino acid binding protein that is localized to the periplasm; 2) Mrub_2121 (DNA coordinates 2170433..2171353 on the reverse strand) encodes the first TMD; 3) Mrub_2122 (DNA coordinates 2171365..2172279 on the reverse strand) encodes the second TMD; 4) Mrub_2123 (DNA coordinates 2172276..2173028 on the reverse strand) encodes the first NBD; 5) Mrub_2124 …


Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott Jan 2018

Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1675, Mrub_1676, Mrub_1677, and Mrub_1679 (KEGG map number 02010). We predict these genes encode components of a Branched chain amino acid (ABC) transporter: Mrub_1675 (DNA coordinates 1711022..1712185 on the reverse strand) encodes the permease component, Mrub_1676 (DNA coordinates 1712313..1713170) encodes for the NBD (aka nucleotide binding domain), Mrub_1677 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the NBD (aka nucleotide binding domain), Mrub_1678 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the TMD (aka transmembrane domain) and Mrub_1679 (DNA coordinates 1714781..1715485 on the reverse strand) encodes …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …


Validation Of Minimally-Invasive Sample Collection Methods For Measurement Of Telomere Length, Stephanie A. Stout, Jue Lin, Natalie Hernandez, Elysia Poggi Davis, Elizabeth Blackburn, Judith E. Carroll, Laura M. Glynn Dec 2017

Validation Of Minimally-Invasive Sample Collection Methods For Measurement Of Telomere Length, Stephanie A. Stout, Jue Lin, Natalie Hernandez, Elysia Poggi Davis, Elizabeth Blackburn, Judith E. Carroll, Laura M. Glynn

Psychology: Faculty Scholarship

Objective: The discovery of telomere length (TL) as a biomarker of cellular aging and correlate of age-related disease has generated a new field of research in the biology of healthy aging. Although the most common method of sample collection for TL is venous blood draw, less-invasive DNA collection methods are becoming more widely used. However, how TL relates across tissues derived from these sample collection methods is poorly understood. The current study is the first to characterize the associations in TL across three sample collection methods: venous whole blood, finger prick dried blood spot and saliva.

Methods: TL …


High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao Nov 2017

High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao

Medical Diagnostics & Translational Sciences Faculty Publications

We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG) n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG) n tract length at the end of each …


Itraq-Based Proteomics Analysis And Network Integration For Kernel Tissue Development In Maize, Long Zhang, Yongbin Dong, Qilei Wang, Chunguang Du, Wenwei Xiong, Xinyu Li, Sailan Zhu, Yuling Li Aug 2017

Itraq-Based Proteomics Analysis And Network Integration For Kernel Tissue Development In Maize, Long Zhang, Yongbin Dong, Qilei Wang, Chunguang Du, Wenwei Xiong, Xinyu Li, Sailan Zhu, Yuling Li

Department of Biology Faculty Scholarship and Creative Works

Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in …