Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Small Rnas Gained During Epididymal Transit Of Sperm Are Essential For Embryonic Development In Mice, Colin C. Conine, Fengyun Sun, Lina Song, Jaime A. Rivera-Perez, Oliver J. Rando Apr 2018

Small Rnas Gained During Epididymal Transit Of Sperm Are Essential For Embryonic Development In Mice, Colin C. Conine, Fengyun Sun, Lina Song, Jaime A. Rivera-Perez, Oliver J. Rando

University of Massachusetts Medical School Faculty Publications

The small RNA payload of mammalian sperm undergoes dramatic remodeling during development, as several waves of microRNAs and tRNA fragments are shipped to sperm during post-testicular maturation in the epididymis. Here, we take advantage of this developmental process to probe the function of the sperm RNA payload in preimplantation development. We generated zygotes via intracytoplasmic sperm injection (ICSI) using sperm obtained from the proximal (caput) vs. distal (cauda) epididymis, then characterized development of the resulting embryos. Embryos generated using caput sperm significantly overexpress multiple regulatory factors throughout preimplantation development, and subsequently implant inefficiently and fail soon after implantation. Remarkably, microinjection ...


Targets And Functions Of The Microrna-200 Family In The Developing Skin And Hair Follicle, Jaimee Elizabeth Hoefert Jan 2018

Targets And Functions Of The Microrna-200 Family In The Developing Skin And Hair Follicle, Jaimee Elizabeth Hoefert

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

The microRNA-200 (miR-200) family is well known for preventing epithelial-to-mesenchymal transition in cancer. However, the targets and functions of this family in normal epithelial tissues remain unclear. This five-member microRNA (miRNA) family also presents a unique platform for studying miRNA-mediated regulation, as they share two nearly-identical seed sequences. The results presented within this dissertation establish a role for these miRNAs in governing hair follicle morphogenesis and fine-tuning cell specification by regulating cell adhesion, polarity, and signaling pathways. By directly ligating miRNAs to their targeted mRNA regions, numerous miR-200 family targets are identified, many of which are involved ...