Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse May 2010

Xenoestrogen-Specific Mechanisms Of Developmental Reprogramming Correlate With Gene Expression And Tumor Development, Kristen L. Greathouse

Dissertations & Theses (Open Access)

Environmental exposures during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life in a process known as developmental reprogramming. We have shown that neonatal exposure to the xenoestrogen diethylstilbestrol (DES) can developmentally reprogram the reproductive tract in genetically susceptible Eker rats giving rise to complete penetrance of uterine leiomyoma. Based on this, we hypothesized that xenoestrogens, including genistein (GEN) and bisphenol A (BPA), reprogram estrogen-responsive gene expression in the myometrium and promote the development of uterine leiomyoma. We proposed the mechanism that is responsible for the developmental reprogramming of gene expression was through …


Reverse Genetic And Cell Biological Approaches To The Study Of Developmental Functions Of Class Xi Myosin In Arabidopsis Thaliana, Eunsook Park Mar 2010

Reverse Genetic And Cell Biological Approaches To The Study Of Developmental Functions Of Class Xi Myosin In Arabidopsis Thaliana, Eunsook Park

Doctoral Dissertations

Myosin proteins function as molecular motors that drive the ATP-dependent movement of cellular components along actin filaments. Vascular plants encode two different types of myosin, referred to as class VIII and class XI. Although class XI myosins have been suggested to function in organelle movement and cytoplasmic streaming, little is known about their cellular function in detail.

The Arabidopsis genome encodes 13 class XI myosin genes. The reasons for the relatively large number of myosin XI isoforms present within a single plant species are unknown. To investigate the function of these gene products in the cell, we determined the spatial …