Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

University of Massachusetts Medical School

Male fertility

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Intraflagellar Transport Protein Ift20 Is Essential For Male Fertility And Spermiogenesis In Mice, Zhengang Zhang, Wei Li, Yong Zhang, Ling Zhang, Maria E. Teves, Hong Liu, Jerome F. Strauss 3rd, Gregory J. Pazour, James A. Foster, Rex A. Hess, Zhibing Zhang Nov 2016

Intraflagellar Transport Protein Ift20 Is Essential For Male Fertility And Spermiogenesis In Mice, Zhengang Zhang, Wei Li, Yong Zhang, Ling Zhang, Maria E. Teves, Hong Liu, Jerome F. Strauss 3rd, Gregory J. Pazour, James A. Foster, Rex A. Hess, Zhibing Zhang

University of Massachusetts Medical School Faculty Publications

Intraflagellar transport (IFT) is a conserved mechanism thought to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile with significantly reduced sperm counts and motility. In addition, abnormally shaped elongating spermatid heads and bulbous round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria and a decrease in mature lysosomes. The few developed sperm had ...


The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros Jul 2014

The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros

Program in Molecular Medicine Publications and Presentations

MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad ...