Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

University of Massachusetts Medical School

Development

Open Access Articles

Articles 1 - 2 of 2

Full-Text Articles in Molecular Biology

Brown Fat Organogenesis And Maintenance Requires Akt1 And Akt2, Joan Sanchez-Gurmaches, Camila Martinez Calejman, Su Myung Jung, Huawei Li, David A. Guertin May 2019

Brown Fat Organogenesis And Maintenance Requires Akt1 And Akt2, Joan Sanchez-Gurmaches, Camila Martinez Calejman, Su Myung Jung, Huawei Li, David A. Guertin

Open Access Articles

OBJECTIVE: Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development.

METHODS: We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white ...


Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim Jan 2019

Ninjurin1 Positively Regulates Osteoclast Development By Enhancing The Survival Of Prefusion Osteoclasts, Sung-Jin Bae, Min Wook Shin, Taekwon Son, Hye Shin. Lee, Ji Soo Chae, Sejin Jeon, Goo Taeg Oh, Kyu-Won Kim

Open Access Articles

Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1(-/-) mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis ...