Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Molecular Biology

Targeting Bet Proteins Downregulates Mir-33a To Promote Synergy With Pim Inhibitors In Cmml, Christopher T. Letson Nov 2023

Targeting Bet Proteins Downregulates Mir-33a To Promote Synergy With Pim Inhibitors In Cmml, Christopher T. Letson

USF Tampa Graduate Theses and Dissertations

Chronic Myelomonocytic Leukemia (CMML) is a rare myeloid malignancy with a dismal prognosis and no therapeutic options which are capable of altering the natural course of the disease. There remains a significant need for novel therapies that are able to meaningfully improve patient outcomes. In this study we explore the effectiveness of Bromodomain and Extra-Terminal domain protein inhibitor (BETi) combinations in CMML. Preclinical studies in myeloid neoplasms have demonstrated efficacy of BETi. However, BETi demonstrate poor single agent activity in clinical trials. Several studies suggest that combinations with other anti-cancer inhibitors may enhance the efficacy of BETi. To nominate BETi …


X-Linked Ubiquitin-Specific Peptidase 11 Increases Tauopathy Vulnerability In Women, Yan Yan Oct 2022

X-Linked Ubiquitin-Specific Peptidase 11 Increases Tauopathy Vulnerability In Women, Yan Yan

USF Tampa Graduate Theses and Dissertations

Women experience significantly higher tau burden and increased risk for Alzheimer’s disease (AD) than men, yet the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially …


Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett Jul 2022

Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett

USF Tampa Graduate Theses and Dissertations

The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in C. elegans. We performed an RNA interference screen of lysine acetyltransferases and examined mRNA expression of the heat-shock inducible gene …


Unraveling The Role Of Novel G5 Peptidase Family Proteins In Virulence And Cell Envelope Biogenesis Of Staphylococcus Aureus, Stephanie M. Marroquin Nov 2021

Unraveling The Role Of Novel G5 Peptidase Family Proteins In Virulence And Cell Envelope Biogenesis Of Staphylococcus Aureus, Stephanie M. Marroquin

USF Tampa Graduate Theses and Dissertations

Virulence factors and the bacterial cell envelope are two important components in S. aureus pathogenesis and survival. More importantly, understanding the regulation of these cellular processes is crucial to further understanding and combating this successful pathogen. To date, numerous factors have been identified as playing a role in the regulation of Agr activity in S. aureus, including transcription factors, antisense RNAs, and host elements. Herein we investigate the product of SAUSA300_1984 (termed MroQ), a transmembrane G5 peptidase family protein, as a novel effector of this system. Using a USA300 mroQ mutant we observed a drastic reduction in proteolysis, hemolysis, and …


Screening Next-Generation Fluorine-19 Probe And Preparation Of Yeast-Derived G Proteins For Gpcr Conformation And Dynamics Study, Wenjie Zhao Jul 2021

Screening Next-Generation Fluorine-19 Probe And Preparation Of Yeast-Derived G Proteins For Gpcr Conformation And Dynamics Study, Wenjie Zhao

USF Tampa Graduate Theses and Dissertations

GPCR regulates numerous diverse physiological processes relevant to diabetes, obesity, Alzheimer's diseases, and several central nervous system disorders and targets proteins in signaling pathways. It has created nearly 200 billion profits from its derivative drugs in 2018. There are near 400 structures of over 70 GPCRs have been resolved by X-ray crystallography, cryo-electron microscopy, and NMR spectroscopy. One of the current challenges that remain in the conformational transition and dynamics study using NMR spectroscopy is to obtain sufficient quantities of the G proteins and GPCRs. Pichia pastoris has shown its tremendous promise in expressing the GPCRs in a high yield, …


Evolution Of Targeted Therapy Resistance In Eml4-Alk Positive Non-Small Cell Lung Cancer, Robert Vander Velde Jun 2021

Evolution Of Targeted Therapy Resistance In Eml4-Alk Positive Non-Small Cell Lung Cancer, Robert Vander Velde

USF Tampa Graduate Theses and Dissertations

Targeted therapies have emerged as potent treatments that lead to the remission of many tumors. However, they rarely cure cancers in advanced, metastatic settings. This is due to the evolution of resistance, which in turn can be ascribed to the survival of small subpopulations of tolerant and/or resistant cells. Here we investigated the evolution of resistance to EML4-ALK inhibitors in non-small cell lung cancer (NSCLC) and demonstrated that resistance evolves gradually, from unique pre-treatment sub-populations, as multiple resistance mechanisms accumulate in a Darwinian fashion. Despite accumulating multiple changes, cells evolved, in parallel, toward similar inhibitor specific phenotypes. Evolving cells have …


Posttranslational Modification And Protein Disorder Regulate Protein-Protein Interactions And Dna Binding Specificity Of P53, Robin Levy Nov 2020

Posttranslational Modification And Protein Disorder Regulate Protein-Protein Interactions And Dna Binding Specificity Of P53, Robin Levy

USF Tampa Graduate Theses and Dissertations

p53 is an intrinsically disordered transcription factor that suppresses tumor development by arresting the cell cycle and promoting DNA repair. p53 deletions or mutations can lead to cancer due to the inability of cells to respond to stress. The protein levels and post-translational modification state of p53 changes in response to cellular stress like DNA damage. Previous studies have shown that p53 can undergo coupled folding and binding with the E3 ubiquitin ligase, Mdm2, and the histone deacetylase, p300. In normal cells, p53 is kept at a low level by Mdm2, which marks it with ubiquitin, targeting p53 for proteasome …


Role Of Ceramide-1 Phosphate In Regulation Of Sphingolipid And Eicosanoid Metabolism In Lung Epithelial Cells, Brittany A. Dudley Oct 2020

Role Of Ceramide-1 Phosphate In Regulation Of Sphingolipid And Eicosanoid Metabolism In Lung Epithelial Cells, Brittany A. Dudley

USF Tampa Graduate Theses and Dissertations

Ceramide 1-Phosphate (C1P) is a sphingolipid metabolite which plays a large role in inflammation, cell survival and proliferation1. C1P is known to have both pro- and anti-apoptotic roles in lung cancer cells, governed by ceramide kinase (CERK), upstream of precursor ceramide (Cer)2. Previous work reveals C1P serves as the liaison between sphingolipid and eicosanoid synthesis, by decreasing the dissociation rate of group IVA cytosolic PLA2 (cPLA) from the Golgi membrane, C1P directly activates this phospholipase for downstream eicosanoid synthesis and subsequent inflammatory response3. CERK has been discovered to modulate eicosanoid synthesis, …


A Health Evaluation Of Gulf Of Mexico Golden Tilefish (Lopholatilus Chamaeleonticeps) And Red Snapper (Lutjanus Campechanus) Following The Deepwater Horizon Oil Spill, Kristina Leigh Deak Jul 2020

A Health Evaluation Of Gulf Of Mexico Golden Tilefish (Lopholatilus Chamaeleonticeps) And Red Snapper (Lutjanus Campechanus) Following The Deepwater Horizon Oil Spill, Kristina Leigh Deak

USF Tampa Graduate Theses and Dissertations

A lack of baseline heath indices for offshore Gulf of Mexico (GoM) teleosts complicated impact assessments of the Deepwater Horizon (DWH) oil spill. While measurement of contaminant levels in fish after a pollution event can document exposure, such data fail to provide meaningful information about how this contact affects an animal's physiology. Controlled exposure studies have highlighted the utility of biomarkers that may indicate deleterious, long-lasting effects of pollutant exposure on various life stages of fish, however, their extrapolation to wild-caught, non-model species is challenging. In an increasingly chemically-saturated environment, it can also be difficult to separate the influence of …


Modeling Of Interaction Of Ions With Ether- And Ester-Linked Phospholipids, Matthew W. Saunders Oct 2019

Modeling Of Interaction Of Ions With Ether- And Ester-Linked Phospholipids, Matthew W. Saunders

USF Tampa Graduate Theses and Dissertations

Phospholipids are present in all parts of cells and are used in many signalling and struc- tural roles. As structural molecules they act as the main component of cellular membranes. Bilayer properties are heavily influenced by the structure of their component polar lipids, and different lipids are found in different organisms. A distinguishing feature of Archaeal plasma membranes is that their phospholipids contain ether-links, as opposed to bacterial and eukaryotic plasma membranes where phospholipids primarily contain ester-links. In our work we examine the effects of salt on bilayer structure in the case of both ester- and ether-linked lipid bilayers. We …


Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea Jun 2019

Functional Characterization Of The Ovarian Tumor Domain Deubiquitinating Enzyme 6b, Jasmin M. D'Andrea

USF Tampa Graduate Theses and Dissertations

The posttranslational modification ubiquitination is major regulatory mechanism used throughout cell signaling pathways such as cell cycle regulation and the DNA damage response. As such, the E3 ligases and their deubiquitinating enzyme counterparts, which conjugate and deconjugate ubiquitin to and from protein substrates respectively, must be tightly regulated to prevent aberrant cellular behaviors that could lead to diseases such as cancer.

Of the five families of deubiquitinating enzymes, the Ovarian Tumor Domain (OTU) family is fairly unique and under-studied; many of its family members hold a linkage specificity to certain ubiquitin chains and a number of them have been implicated …


Myc Distant Enhancers Underlie Ovarian Cancer Susceptibility At The 8q24.21 Locus, Anxhela Gjyshi Gustafson Oct 2018

Myc Distant Enhancers Underlie Ovarian Cancer Susceptibility At The 8q24.21 Locus, Anxhela Gjyshi Gustafson

USF Tampa Graduate Theses and Dissertations

Ovarian cancer is a leading cause of death among women diagnosed with cancer. Mortality rate is high because an overwhelming majority of new cases are diagnosed with late-stage disease when the survival statistics are very poor with an overall 5-year survival rate of less than 40%. Despite the large burden of disease, the etiology of ovarian cancer is not well understood. In addition to linkage studies that have identified highly penetrant cancer susceptibility genes such as BRCA1 and BRCA2, the emergence of Genome Wide Association Studies (GWAS) in the last decade has facilitated the identification of common genetic variants with …


Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss Apr 2018

Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss

USF Tampa Graduate Theses and Dissertations

Alcohol liver disease (ALD) is a major health concern throughout the world. Currently, in the United States, 17 million people suffer from alcoholism, of which 1.4 million people are receiving treatment [1, 2]. The link between ethanol metabolism, reactive oxygen species (ROS) and liver injury in ALD has been well characterized over the last couple decades [3-10]. Ethanol metabolism relies on the availability of the cofactor NAD+ for the oxidation of ethanol into acetate, consequently causing alterations in redox potential. Redox dysfunction within the mitochondria can affect multiple pathways important in maintaining cellular homeostasis. Chapter 1 provides an introduction to …


Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell Apr 2017

Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell

USF Tampa Graduate Theses and Dissertations

In order to survive, cells must be able to cope with a variety of environmental stressors. The heat shock response (HSR) is a pro-survival mechanism employed by cells in response to protein denaturing stress, such as heat. Since its discovery in 1960, the heat shock response has been found to be regulated by the transcription factor heat shock factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step process of activation that involves homotrimerization, DNA-binding, and post-translational regulatory modifications, all of which ultimately function to control the transcription of chaperone genes. These chaperone genes encode molecular chaperone proteins …


Gene Expression Profiling And The Role Of Hsf1 In Ovarian Cancer In 3d Spheroid Models, Trillitye Paullin Nov 2016

Gene Expression Profiling And The Role Of Hsf1 In Ovarian Cancer In 3d Spheroid Models, Trillitye Paullin

USF Tampa Graduate Theses and Dissertations

Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in …


Computational Modeling Of Allosteric Stimulation Of Nipah Virus Host Binding Protein, Priyanka Dutta Jul 2016

Computational Modeling Of Allosteric Stimulation Of Nipah Virus Host Binding Protein, Priyanka Dutta

USF Tampa Graduate Theses and Dissertations

Nipah belongs to the family of paramyxoviruses that cause numerous fatal diseases in humans and farm animals. There are no FDA approved drugs for Nipah or any of the paramyxoviruses. Designing antiviral therapies that are more resistant to viral mutations require understanding of molecular details underlying infection. This dissertation focuses on obtaining molecular insights into the very first step of infection by Nipah. Such details, in fact, remain unknown for all paramyxoviruses. Infection begins with the allosteric stimulation of Nipah virus host binding protein by host cell receptors. Understanding molecular details of this stimulation process have been challenging mainly because, …


Cmg Helicase Assembly And Activation: Regulation By C-Myc Through Chromatin Decondensation And Novel Therapeutic Avenues For Cancer Treatment, Victoria Bryant Jun 2016

Cmg Helicase Assembly And Activation: Regulation By C-Myc Through Chromatin Decondensation And Novel Therapeutic Avenues For Cancer Treatment, Victoria Bryant

USF Tampa Graduate Theses and Dissertations

The CMG (Cdc45, MCM, GINS) helicase is required for cellular proliferation and functions to unwind double-stranded DNA to allow the replication machinery to duplicate the genome. Cancer cells mismanage helicase activation through a variety of mechanisms, leading to the potential for the development of novel anti-cancer treatments. Mammalian cells load an excess of MCM complexes that act as reserves for new replication origins to be created when replication forks stall due to stress conditions, such as drug treatment. Targeting the helicase through inhibition of the MCM complex has sensitized cancer cells to drugs that inhibit DNA replication, such as aphidicolin …


In Vitro And In Vivo Antioxidant Capacity Of Synthetic And Natural Polyphenolic Compounds Identified From Strawberry And Fruit Juices, Marvin Abountiolas Mar 2016

In Vitro And In Vivo Antioxidant Capacity Of Synthetic And Natural Polyphenolic Compounds Identified From Strawberry And Fruit Juices, Marvin Abountiolas

USF Tampa Graduate Theses and Dissertations

Strawberries can be considered a functional food because their consumption has been associated with several health benefits. They are important sources of bioactive compounds, such as vitamins and polyphenolic compounds, with recognized antioxidant capacity (AOC). However, strawberry overall quality and bioactive content are greatly affected by environmental conditions during pre- and post-harvest and, little is known about the stability of its bioactive compounds, specifically ascorbic acid (AA) and polyphenolics compounds. Furthermore, additional research that addresses the impact of polyphenolic compounds on in vitro and in vivo models is needed to understand the mechanisms behind their potential health benefits. Therefore, the …


Mir494 Reduces Renal Cancer Cell Survival Coinciding With Increased Lipid Droplets And Mitochondrial Changes, Punashi Dutta, Edward Haller, Arielle Sharp, Meera Nanjundan Jan 2016

Mir494 Reduces Renal Cancer Cell Survival Coinciding With Increased Lipid Droplets And Mitochondrial Changes, Punashi Dutta, Edward Haller, Arielle Sharp, Meera Nanjundan

Molecular Biosciences Faculty Publications

Background: miRNAs can regulate cellular survival in various cancer cell types. Recent evidence implicates the formation of lipid droplets as a hallmark event during apoptotic cell death response. It is presently unknown whether MIR494, located at 14q32 which is deleted in renal cancers, reduces cell survival in renal cancer cells and if this process is accompanied by changes in the number of lipid droplets.

Methods: 769-P renal carcinoma cells were utilized for this study. Control or MIR494 mimic was expressed in these cells following which cell viability (via crystal violet) and apoptotic cell numbers (via Annexin V/PI staining) were …


Direct Analysis In Real Time (Dart) Of An Organothiophosphate At Ultrahigh Resolution By Fourier Transform Ion Cyclotron Resonance Mass Spectrometry And Tandem Mass Spectrometry, Laszlo Prokai, Stanley M. Stevens Jr. Jan 2016

Direct Analysis In Real Time (Dart) Of An Organothiophosphate At Ultrahigh Resolution By Fourier Transform Ion Cyclotron Resonance Mass Spectrometry And Tandem Mass Spectrometry, Laszlo Prokai, Stanley M. Stevens Jr.

Molecular Biosciences Faculty Publications

Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the …


Effect Of Hydroxychloroquine And Characterization Of Autophagy In A Mouse Model Of Endometriosis, A. Ruiz, S. Rockfield, N. Taran, E. Haller, Robert Engelman, I Flores, P Panina-Bordignon, Meera Nanjundan Jan 2016

Effect Of Hydroxychloroquine And Characterization Of Autophagy In A Mouse Model Of Endometriosis, A. Ruiz, S. Rockfield, N. Taran, E. Haller, Robert Engelman, I Flores, P Panina-Bordignon, Meera Nanjundan

Molecular Biosciences Faculty Publications

In endometriosis, the increased survival potential of shed endometrial cells (which normally undergo anoikis) is suggested to promote lesion development. One mechanism that may alter anoikis is autophagy. Using an autophagic flux inhibitor hydroxychloroquine (HCQ), we identified that it reduces the in vitro survival capacity of human endometriotic and endometrial T-HESC cells. We also identified that HCQ could decrease lesion numbers and disrupt lesion histopathology, as well as increase the levels of peritoneal macrophages and the IP-10 (10 kDa interferon-γ-induced protein) chemokine in a mouse model of endometriosis. We noted that RNA levels of a subset of autophagic …


A Forward Genetic Screen Identifies Factors Associated With Fever Pathogenesis In Plasmodium Falciparum, Phaedra J. Thomas Sep 2015

A Forward Genetic Screen Identifies Factors Associated With Fever Pathogenesis In Plasmodium Falciparum, Phaedra J. Thomas

USF Tampa Graduate Theses and Dissertations

Infectious diseases that spread from person-to-person and continent-to-continent are a cause for concern for any health entity. One such disease is malaria, a mosquito-borne infection instigated by the protozoan parasite, Plasmodium falciparum. Hundreds of millions of people are affected annually and it is responsible for nearly 1 million deaths. It is the most fatal species causing malaria and proliferates in human red blood cells with a life cycle occurring every 48 hours. At this time, the parasite’s late stage form or schizont bursts from the erythrocyte releasing immune-inducing particles and infective forms (merozoites) into the bloodstream. The merozoites go …


A Functional Chlorophyll Biosynthesis Pathway Identified In The Kleptoplastic Sea Slug, Elysia Chlorotica, Julie A. Schwartz Feb 2015

A Functional Chlorophyll Biosynthesis Pathway Identified In The Kleptoplastic Sea Slug, Elysia Chlorotica, Julie A. Schwartz

USF Tampa Graduate Theses and Dissertations

The sacoglossan sea slug, Elysia chlorotica, feeds upon and sequesters plastids from the heterokont alga, Vaucheria litorea, and maintains the metabolically active organelles for up to nine months under starvation conditions while utilizing the photosynthate to survive and reproduce. The photosynthetic pigment, chlorophyll a (Chla), is found in all oxygenic photosynthetic organisms and is responsible for capturing photons of light and converting them into chemical energy. Chlorophyll and its associated proteins involved in the light capturing process are subject to photo oxidative damage and must be continually replaced for ongoing photosynthesis to continue; however, genes encoding these proteins are present …


Functional Analysis Of The Ovarian Cancer Susceptibility Locus At 9p22.2 Reveals A Transcription Regulatory Network Mediated By Bnc2 In Ovarian Cells, Melissa Buckley Jan 2015

Functional Analysis Of The Ovarian Cancer Susceptibility Locus At 9p22.2 Reveals A Transcription Regulatory Network Mediated By Bnc2 In Ovarian Cells, Melissa Buckley

USF Tampa Graduate Theses and Dissertations

GWAS have identified several chromosomal loci associated with ovarian cancer risk. However, the mechanism underlying these associations remains elusive. We identify candidate functional Single Nucleotide Polymorphisms (SNPs) at the 9p22.2 ovarian cancer susceptibility locus, several of which map to transcriptional regulatory elements active in ovarian cells identified by FAIRE-seq (Formaldehyde assisted isolation of regulatory elements followed by sequencing) and ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) in relevant cell types. Reporter and electrophoretic mobility shift assays (EMSA) determined the extent to which candidate SNPs had allele specific effects. Chromosome conformation capture (3C) reveals a physical association between Basonuclin 2 (BNC2) and …


High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes Jan 2015

High-Throughput Screening Of Age-Related Changes In Caenorhabditis Elegans, Neil Copes

USF Tampa Graduate Theses and Dissertations

This project was developed to identify novel methods for high-throughput culturing and screening of C. elegans to investigate age-related metabolic changes and to survey the proteomic and metabolomic factors associated with age-related changes. To accomplish these goals we developed a novel way to grow C. elegans in liquid culture in 96-well microplates for several weeks without suffering significant fluid loss due to evaporation and without needing to shake or unseal the plates for aeration. We also developed methods for assaying the total volume of live C. elegans in microplate cultures using a fluorescence microplate reader and for performing RNAi experiments …


The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards Jan 2015

The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards

USF Tampa Graduate Theses and Dissertations

Understanding how metabolites contribute to anaplerosis, antioxidant effects, and hormetic pathways during aging is fundamental to creating supplements and dietary habits that may decrease age-associated disease and decline, thus improving the quality of life in old age. In order to uncover metabolic pathways that delay aging, the effects of large sets of metabolites associated with mitochondrial function on lifespan were investigated.

Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in C. elegans. Addition of fumarate and succinate also extended lifespan and all three metabolites activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced …


Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich Jun 2014

Rna Detection Technology For Applications In Marine Science: Microbes To Fish, Robert Michael Ulrich

USF Tampa Graduate Theses and Dissertations

The accurate identification of taxa from mixed assemblages using genetic analysis remains an important field of molecular biology research. The common principle behind the development of numerous documented genetic detection technologies is to exploit specific nucleotide sequences inherent to each taxon. This body of work focuses on practical applications of real-time nucleic acid sequence-based amplification (RT-NASBA) in marine science, and is presented in four case studies. Each study represents novel work in the genetic identification of respective taxa of interest using RT-NASBA. Two case studies documented the development of an assay targeting mitochondrial 16S rRNA to discern legally salable grouper …


Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke Mar 2014

Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke

USF Tampa Graduate Theses and Dissertations

Toxoplasma gondii is an obligate intracellular protozoan parasite of animals and man. The asexual life cycle of Toxoplasma involves three very distinct, but tightly coordinated developmental stages. In nature, the sporozoite (contained within an oocyst) and bradyzoite (contained within a tissue cyst) initiate infection of the intermediate host, followed by rapid differentiation into the actively replicating tachyzoite. When countered by an effective host response, the tachyzoite differentiates back into the latent bradyzoite and this unique ability of Toxoplasma to interconvert between the replicating tachyzoite and the latent bradyzoite within a single host is the cause of life long infection. The …


Matrix Metalloproteinase Genes Are Transcriptionally Regulated By E2f Transcription Factors: A Link Between Cell Cycle Control And Metastatic Progression, Jacqueline Lea Johnson Feb 2012

Matrix Metalloproteinase Genes Are Transcriptionally Regulated By E2f Transcription Factors: A Link Between Cell Cycle Control And Metastatic Progression, Jacqueline Lea Johnson

USF Tampa Graduate Theses and Dissertations

The RbµE2F transcriptional regulatory pathway plays a critical role in the cell cycle. Rb is inactivated through multiple waves of phosphorylation, mediated mainly by cyclin D and cyclin E associated kinases. Once Rb is inactivated, cells can enter Sµphase. Collectively, three Rb family members and ten E2F proteins coordinate every additional stage of the cell cycle, from quiescence to mitosis. However the RbµE2F pathway is frequently altered in cancer. Aside from cell proliferation, the RbµE2F pathway regulates other essential cellular processes including apoptosis, cell differentiation, angiogenesis and DNA damage repair pathways, but its role in invasion and cancer progression is …