Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Molecular Biology

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott Jan 2020

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. We researched tester strains B. subtilis and E. coli from the soil isolates obtained. We further verified if the isolates were common antibiotic bacteria. Unfortunately, this project heavily relied on biochemical tests, colony morphology, and Gram stains to reject or fail to reject our hypothesis. Our goal was to discover new antibiotic-producing bacteria that could be beneficial in combating ESKAPE strains. A proper PCR and DNA extraction would be required …


Putative Antibiotic Producer: A Pseudomonas Genus With Antibiotic Properties, John Tworek, Dr. Lori Scott Jan 2020

Putative Antibiotic Producer: A Pseudomonas Genus With Antibiotic Properties, John Tworek, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

There is a series antibiotic crisis in the world with catastrophic consequences if action is not take. Many diseases caused by bacteria are becoming untreatable because of the amount of pathogens resistant to the effect of antibiotics. The most prolific bacteria are the ESKAPE bacteria. They are nonsocomial pathogens that exhibit multi-drug resistance and virulence. My project will be working alongside the Tiny Earth Project (TEPI) to educate the public about the antibiotic crisis as well as obtaining a soil sample to possible discover new antibiotics. The DNA sequencing data retrieved from soil isolates against the two ESKAPE tester strains …


Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott Jan 2020

Screening For Antibiotic-Producers In Soil From A Garden, Long Tran, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

Multidrug-resistant pathogens are the leading cause of nosocomial infection, which killed more than 30,000 people in the United States every year. Among these, ESKAPE strains bugs, which comprise six highly drug-resistant bacteria, pose the greatest challenge to the healthcare system. In order to fight the antibiotic-resistant crises, novel antibiotic-producers must be discovered. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. Pseudomonas was revealed to produce a zone of inhibition against Bacillus subtilis on LB media. The next step …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott May 2018

Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of Escherichia coli and Meiothermus ruber proC genes using the complementation assay. In this research project, mutants of varying severity to the functional state of the protein were developed. The results showed that two or more amino acid deletions reduced or eliminated ProC function. Amino acid substitutions, on the other hand, were not severe enough to impact ProC function. Double and triple mutants …


Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott Jan 2018

Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes b3725, b3726, b3727, b3728 and Mrub_2518, Mrub_2519, Mrub_2520 and Mrub_2521 (KEGG map number 02010). We predict that these genes encode the components of a Phosphate ABC transporter: Orthologous genes Mrub_2518 (DNA coordinates 2565359..2566438) and b3728 encodes the periplasmic phosphate binding component; Orthologous genes Mrub_2519 (DNA coordinates 2566499..2567485) and b3727, and Mrub_2520 (DNA coordinates 2567496..2568326) and b3726 encode for the two transmembrane proteins; Orthologous genes Mrub_2521 (DNA coordinates 2568338..2569159) and b3725 encode for the ATP binding protein within the cytoplasm. Within the two species, M. ruber and E. coli, …


Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott Jan 2018

Mrub_1325, Mrub_1326, Mrub_1327, And Mrub_1328 Are Orthologs Of B_3454, B_3455, B_3457, B_3458, Respectively Found In Escherichia Coli Coding For A Branched Chain Amino Acid Atp Binding Cassette (Abc) Transporter System, Bennett Tomlin, Adam Buric, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1325, Mrub_1326, Mrub_1327, and Mrub_1328 (KEGG map number 02010). We predict these genes encode components of a Branched Chain Amino Acid ATP Binding Cassette (ABC) transporter: 1) Mrub_1325 (DNA coordinates 1357399-1358130 on the reverse strand) encodes the ATP binding domain; 2) Mrub_1326 (DNA coordinates 1358127-1359899 on the reverse strand) encodes the ATP-binding domain and permease domain; 3) Mrub_1327 (DNA coordinates 1359899-1360930 on the reverse strand) encodes a permease domain; and 4)Mrub_1328 (DNA coordinates 1711022-1712185 on the reverse strand) encodes the substrate binding domain. This system is not predicted to …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott Jan 2018

Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 And Mrub_2124 Are Orthologs Of E. Coli Genes B3458, B3457, B3456, B3455 And B3454, Respectively, And Make Up An Operon That Codes For The Branched-Chain Amino Acid Abc Transporter In Meiothermus Ruber Dsm 1279, Aaron Jones, Madelyn Huber, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2120, Mrub_2121, Mrub_2122, Mrub_2123 and Mrub_2124 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2120 (DNA coordinates 2169247-2170416 on the reverse strand) encodes the branched-chain amino acid binding protein that is localized to the periplasm; 2) Mrub_2121 (DNA coordinates 2170433..2171353 on the reverse strand) encodes the first TMD; 3) Mrub_2122 (DNA coordinates 2171365..2172279 on the reverse strand) encodes the second TMD; 4) Mrub_2123 (DNA coordinates 2172276..2173028 on the reverse strand) encodes the first NBD; 5) Mrub_2124 …


Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott Jan 2018

Mrub_1675, Mrub_1676, Mrub_1677, And Mrub_1679 Genes Are Orthologs Of B_3458, B_3457, B_3456, And B_3454 Genes In E. Coli, Respectively, Coding For Abc Transporters. Mrub_1678 And B_3455, Though Perform Similar Tasks, Are Not Orthologous, Ravi Patel, Alaina Hofmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1675, Mrub_1676, Mrub_1677, and Mrub_1679 (KEGG map number 02010). We predict these genes encode components of a Branched chain amino acid (ABC) transporter: Mrub_1675 (DNA coordinates 1711022..1712185 on the reverse strand) encodes the permease component, Mrub_1676 (DNA coordinates 1712313..1713170) encodes for the NBD (aka nucleotide binding domain), Mrub_1677 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the NBD (aka nucleotide binding domain), Mrub_1678 (DNA coordinates 1713167..1714075 on the reverse strand) encodes the TMD (aka transmembrane domain) and Mrub_1679 (DNA coordinates 1714781..1715485 on the reverse strand) encodes …


Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott Jan 2017

Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1873, Mrub_1872, and Mrub_1871.We predict that Mrub_1873 (DNA coordinates 1933743..1934309 on the reverse strand), Mrub_1872 (DNA coordinates 1932430..1933746 on the reverse strand), and Mrub_1871 (DNA coordinates 1930055..1932421 on the reverse strand) are subunits of the NADH ubiquinone oxidoreductase complex (00190). The complex catalyzes both the transfer of protons across the cytoplasmic membrane and the transfer of electrons to ubiquinone during …


Annotation And Identification Of Several Glycerolipid Metabolic Related Ortholog Genes; Mrub_0437, Mrub_1813 And Mrub_2759 In The Organism Meithermus Ruber And Their Predicted Respective Orthologs B3926, B4042 And Bo514 Found In E.Coli., Abdul Rahman Abdul Kader, Dr. Lori R. Scott Jan 2017

Annotation And Identification Of Several Glycerolipid Metabolic Related Ortholog Genes; Mrub_0437, Mrub_1813 And Mrub_2759 In The Organism Meithermus Ruber And Their Predicted Respective Orthologs B3926, B4042 And Bo514 Found In E.Coli., Abdul Rahman Abdul Kader, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

We predict Mrub_0437 encodes the enzyme glycerol kinase (DNA coordinates [417621..419183), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of glycerol to sn-Glycerol-3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b3926.

We predict Mrub_1813 encodes the enzyme diacylglycerol kinase (DNA coordinates [1864659..1865063), which is an intermediary step of the glycerolipid metabolic pathway (KEGG map00561), It catalyzes the conversion of 1,2-diacyl-sn-glycerol to 1,2-diacyl-sn-glycerol 3-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b4042.

We predict Mrub_2759 encodes the enzyme glycerol kinase (DNA coordinates [2799712..2800665), which is an intermediary …


Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott Jan 2017

Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2642, Mrub_1054, and Mrub_1059.

We predict that Mrub_2642 encodes the enzyme methionine adenosyltransferase (DNA coordinates [2677251…2678426] on the reverse strand), the first step of the methionine degradation pathway (KEGG map number 00270). Methionine adenosyltransferase catalyzes the conversion of the substrates, ATP, L-methionine, and water, to yield the products S-adenosyl-L-methionine (SAM), inorganic phosphate, and diphosphate. Mrub_1054 encodes adenosylhomocysteine nucleosidase (DNA …


Mrub_1867, Mrub_1868, And Mrub_1869 Genes Are Predicted Orthologs Of The B2279, B2280, And B2281 Genes Found In Escherichia Coli Coding For The Nadh Dehydrogenase Subunits K, J, And I Respectively, Wade Smith, Dr. Lori R. Scott Jan 2017

Mrub_1867, Mrub_1868, And Mrub_1869 Genes Are Predicted Orthologs Of The B2279, B2280, And B2281 Genes Found In Escherichia Coli Coding For The Nadh Dehydrogenase Subunits K, J, And I Respectively, Wade Smith, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1867, Mrub_1868, and Mrub_1869. We predict that Mrub_1867 (DNA coordinates 1927237..1927527 on the reverse strand), Mrub_1868 (DNA coordinates 1927524..1928123 on the reverse strand), and Mrub_1869 (DNA coordinates 1928248..1928781 on the reverse strand) are subunits of the NADH: ubiquinone oxidoreductase complex (KEGG map number 00190). This complex catalyzes the translocation of H+ across the cytoplasmic …


Purification, Optimization, And Growth Of New Delhi Metallo-Β-Lactamase-1 Protein Crystals Mixed With Nz218 Inhibitor, Brandon M. Wills May 2016

Purification, Optimization, And Growth Of New Delhi Metallo-Β-Lactamase-1 Protein Crystals Mixed With Nz218 Inhibitor, Brandon M. Wills

Celebration of Learning

New Delhi metallo-β-lactamase-1 is a problematic gene found in certain strains of bacteria that cause them to become antibiotic resistant to nearly all known antibiotics. While some antibiotics are available to treat patients with a bacterial infection, most are toxic or do not have 100% success rates. With that being said, it is imperative that we search for a molecule that is successfully able to inhibit the effects of this gene every time. Such a discovery would help tremendously with new antibiotic drug development and also prevent further damage by these dangerous bacteria. In this presentation, I will describe the …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …


Bioinformatics Comparison Of M. Ruber Mrub_2507 To E. Coli Pdxk/B1636 And M. Ruber Mrub_2888 To E. Coli Pdxh/B1638 To Determine The Orthologous Nature, Adam Bernardi, Dr. Lori Scott Feb 2016

Bioinformatics Comparison Of M. Ruber Mrub_2507 To E. Coli Pdxk/B1636 And M. Ruber Mrub_2888 To E. Coli Pdxh/B1638 To Determine The Orthologous Nature, Adam Bernardi, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2507 and Mrub_2888. We predict that Mrub_2507 encodes the enzyme pyridoxal kinase (DNA coordinates 2555521..2556402), which is in the Vitamin B6 Metabolism pathway (KEGG map number 00750). It catalyzes the conversion of pyridoxine, pyridoxamine, or pyridoxal to pyridoxine 5’-phosphate, pyridoxamine 5’-phosphate, or pyridoxal 5’-phosphate respectively. The E. coli K12 MG1655 ortholog is predicted to be b1636, which has …


Genomic Analysis Of Meiothermus Ruber Mrub_1907 And Meiothermus Ruber Mrub_1844 With Potential Ortholog Escherichia Coli B3774 Ilvc And Escherichia Coli B3771 Ilvc Gene Through Bioinformatics, Felipe A. Hernandez, Dr. Lori Scott Feb 2016

Genomic Analysis Of Meiothermus Ruber Mrub_1907 And Meiothermus Ruber Mrub_1844 With Potential Ortholog Escherichia Coli B3774 Ilvc And Escherichia Coli B3771 Ilvc Gene Through Bioinformatics, Felipe A. Hernandez, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1907 and Mrub_1844. We predict that Mrub__1907 encodes the enzyme ketol-acid reductoisomerase (DNA coordinates 1966630..1967649 on the reverse strand), which is the fourth step of the L-isoleucine pathway (from threonine) (KEGG map number 00290). It catalyzes the conversion of (R)-3- Hydroxy-3-methyl-2-oxopentanoate to (R)-2-3 Dihydroxy-3-methylpentanoate. The E. coli K12 MG1655 ortholog is predicted to be b3774, which has the gene …


Comparison Of Genes In Meiothermus Ruber And Escherichia Coli In The Thiamine Biosynthesis Pathway, Erin E. Frye, Dr. Lori Scott Feb 2016

Comparison Of Genes In Meiothermus Ruber And Escherichia Coli In The Thiamine Biosynthesis Pathway, Erin E. Frye, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2046 and Mrub_2041.We predict that Mrub_2046 encodes the enzyme phosphomethylpyrimidine kinase (DNA coordinates 2082772..2083572 on the reverse strand), which is the second step of the Thiamine Metabolism pathway (KEGG map number mrb00730). It catalyzes the conversion of 4-Amino-2-methyl-5-phosphomethylpyrimidine to 4-Amino-2-methyl-5-hydroxymethyl diphosphate The E. coli K12 MG1655 ortholog is predicted to be b2103, which has the gene identifier thiD. We …


Meiothermus Ruber Mrub_0976 And Mrub_1641 Share The Same Functions As Escherichia Coli B3940 And B3433 In The Biosynthesis Of Homoserine, Cody Stephans, Dr. Lori Scott Feb 2016

Meiothermus Ruber Mrub_0976 And Mrub_1641 Share The Same Functions As Escherichia Coli B3940 And B3433 In The Biosynthesis Of Homoserine, Cody Stephans, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_0976 and Mrub_1641. We predict that Mrub_0976 encodes the enzyme aspartate kinase (DNA coordinates 964404..965630) which is the 1st step of the homoserine biosynthesispathway (KEGG map number M00018). It catalyzes the conversion L-aspartate to L-asparyl-4-phospate. The E. coli K12 MG1655 ortholog is predicted to be b3940, which has the gene identifier ‘thrA’. We …


Possible Orthologs Of Trpa And Trpb Genes Between E. Coli (B1260 And B1261) And M. Ruber (Mrub_1512 And Mrub_1511), John J. Stenger, Dr. Lori Scott Feb 2016

Possible Orthologs Of Trpa And Trpb Genes Between E. Coli (B1260 And B1261) And M. Ruber (Mrub_1512 And Mrub_1511), John J. Stenger, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

Mrub_1512 encodes the enzyme tryptophan A (DNA coordinates 1544300..1545091), which is the 6th step of the Tryptophan Biosynthesis pathway (KEGG map number 00400). It catalyzes the conversion of Chorismate to L-Tryptophan. The E. coli K12 MG1655 ortholog is predicted to be b1260, which has the gene identifier trpA. We predict that Mrub_1512 (DNA coordinates 1544300..1545091) is a alpha subunit of the Tryptophan Synthase (KEGG map number 00400). Mrub_1511 encodes the enzyme tryptophan B (DNA coordinates 1543083..1544303), which is the 7th step of the Tryptophan Biosynthesis pathway (KEGG map number 00400). It catalyzes the conversion of Chorismate to L-Tryptophan. The E. …


Mrub_2765 Is The Version Of E. Coli Fabz In Meiothermus Ruber, While Mrub_0266 Is The Version Of E. Coli Fabi In Meiothermus Ruber, Amanda M. Narkis, Dr. Lori Scott Feb 2016

Mrub_2765 Is The Version Of E. Coli Fabz In Meiothermus Ruber, While Mrub_0266 Is The Version Of E. Coli Fabi In Meiothermus Ruber, Amanda M. Narkis, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2765 and Mrub_0266. We predict that Mrub_2765 encodes the enzyme β-hydroxyacyl-Acyl carrier protein (ACP) dehydratase (DNA coordinates 2805770..2806213 on the reverse strand), which is the 3rd step of the fatty acid elongation pathway (KEGG map number 00780). It catalyzes the conversion of (3R)-3-hydroxyacyl-[ACP] to trans-2-enoyl-[ACP]. The E. coli K12 MG1655 ortholog is predicted to be …


Pyruvate Metabolism In M. Ruber When Compared To E. Coli, Amanda M. Johnson, Dr. Lori Scott Feb 2016

Pyruvate Metabolism In M. Ruber When Compared To E. Coli, Amanda M. Johnson, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_0476, Mrub_1516, Mrub_1517, Mrub_0477, and Mrub_2322. We predict that Mrub_0476, Mrub_1516, and Mrub_1517 (DNA coordinates 461643..464366, 1548957..1549955, 1549952..1550986, respectively) are a paralogous a subunit of the pyruvate dehydrogenase complex E1(KEGG map number 00620). We predict that Mrub_0477 and Mrub_2322 (DNA coordinates 464402..465697 and 2371690..2373090, respectively) are a paralogous subunit of the pyruvate dehydrogenase complex …


A Bioinformatics Study On Whether Or Not Mrub_2763 Gene In M. Ruber Is Similar To The Lpxb Gene In E. Coli And If Mrub_2768 Is Similar To The Lpxd Gene In E. Coli., Frank J. Habura, Dr. Lori Scott Feb 2016

A Bioinformatics Study On Whether Or Not Mrub_2763 Gene In M. Ruber Is Similar To The Lpxb Gene In E. Coli And If Mrub_2768 Is Similar To The Lpxd Gene In E. Coli., Frank J. Habura, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the gene Mrub_2768 and Mrub_2763. We predict that Mrub_2768 (DNA coordinates 2808186..2809178 on the reverse strand) encodes the enzyme UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase (LpxD), which is the third step of the Lipopolysaccharide biosynthesis pathway (KEGG map number 00540). It catalyzes the conversion of UDP-3-O-(3-hydroxymyristoyl)-α-D-glucosamine + a(3R)-3-hydroxymyristoyl-[acp] → a holo-[acyl-carrier protein] + UDP-2-N,3-O-bis[(3R)-3-hydroxytetradecanoyl]-α-D-glucosamine. The E. coli K12 MG1655 ortholog is predicted to be b0179, which …


Comparing Meiothermus Ruber And Myxococcus Xanthus In The Purine Metabolism Pathway, Linnea J. Ritchie, Dr. Lori Scott Feb 2016

Comparing Meiothermus Ruber And Myxococcus Xanthus In The Purine Metabolism Pathway, Linnea J. Ritchie, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. I investigated the biological functions of Mrub_1053 Mrub_2281 and Mrub_2299. I predicted that Mrub_1053 and Mrub_2281 (DNA coordinates 1053364..1054359 on the forward strand and 2333172..2334113 on the forward strand respectively) encodes the enzyme phosphoribose-1-pyrophosphate synthetase (PRS) which is the first step of the purine synthesis pathway (KEGG). I also predicted that Mrub_2299 (DNA coordinates: 2352378..2353775 on the forward strand) encodes for Phosphoribosyl pyrophosphate (PRPP) amidotransferase, which is …


Valine Biosynthesis: Mrub_2994 Is Orthologous To E. Coli B3770 And Mrub_1844 Is Orthologous To E. Coli B3771, Bennett A. Hartmann, Dr. Lori Scott Feb 2016

Valine Biosynthesis: Mrub_2994 Is Orthologous To E. Coli B3770 And Mrub_1844 Is Orthologous To E. Coli B3771, Bennett A. Hartmann, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2994 and Mrub_1844. We predict that Mrub_1884 encodes the enzyme dihydroxy-acid dehydratase (DNA coordinates 1901362..1903026 on the forward strand), which is the third step of the valine biosynthesis pathway (KEGG map number 00290). It catalyzes the conversion of 2,3-dihydroxy-3methylbutanoate to 3-methyl-2-oxobutanoate. The E. coli K12 MG1655 ortholog is predicted to be b3771, which has the gene identifier ilvD. …


Bioinformatic Comparison Of Genes In The Leucine Biosynthesis Pathway Of Escherichia Coli To Meiothermus Ruber, Isaac D. Schmied, Benjamin T. Ryan, Dr. Lori Scott Feb 2016

Bioinformatic Comparison Of Genes In The Leucine Biosynthesis Pathway Of Escherichia Coli To Meiothermus Ruber, Isaac D. Schmied, Benjamin T. Ryan, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

We predict that Mrub_1905 and Mrub_1906 encode the enzyme 2-isopropylmalate synthase (Mrub_1906 DNA coordinates complement(1965044..1966603) Mrub_1905 DNA coordinates complement(1963455..1965041)), which is the first step of the leucine biosynthesis pathway (KEGG map number 00290). It catalyzes the conversion of (2S)-2-isopropylmalate to 2-isopropylmaleate. The E. coli K12 MG1655 ortholog is predicted to be b0074, which has the gene identifier leuA. We predict that Mrub_1846 encodes the enzyme 3-isopropylmalate dehydrogenase (DNA coordinates complement(1903909..1904961)), which is the third step of the leucine biosynthesis pathway (KEGG map number 00290). It catalyzes the conversion of (2R,3S)-3-isopropylmalate to (2S)-2-isopropyl-3-oxosuccinate. The E. coli K12 MG1655 ortholog is predicted …


Riboflavin Metabolism: A Study To See If Mrub_1256 Is Orthologous To E. Coli B0415, And If Mrub_1254 Is Orthologous To E. Coli B1662, Anish Sora Reddy, Dr. Lori Scott Feb 2016

Riboflavin Metabolism: A Study To See If Mrub_1256 Is Orthologous To E. Coli B0415, And If Mrub_1254 Is Orthologous To E. Coli B1662, Anish Sora Reddy, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1256 and Mrub_1254. We predict that Mrub_1256 encodes the enzyme 6,7-dimethyl-8-ribityllumazine synthase (Dna Coordinates 1282509..1282982 forward strand), which is part of the Riboflavin Metabolism pathway (KEGG map number 00740). It catalyzes the conversion of 3,4-Dihydroxy-2-butanone-4-phosphate or 5-amino-6-ribityl-aminouracil to Quinone. The E. coli K12 MG1655 ortholog is predicted to be E. coli b0415, which has the gene identifier …


The Meiothermus Ruber Mrub_2572 Gene Is An Ortholog Of The Escherichia Coli Pyre B3642 Gene And The Meiothermus Ruber Mrub_2071 Gene Is An Ortholog Of The Escherichia Coli Pyrf B1281 Gene, Cale J. Mccormick, Dr. Lori Scott Feb 2016

The Meiothermus Ruber Mrub_2572 Gene Is An Ortholog Of The Escherichia Coli Pyre B3642 Gene And The Meiothermus Ruber Mrub_2071 Gene Is An Ortholog Of The Escherichia Coli Pyrf B1281 Gene, Cale J. Mccormick, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2572 and Mrub_2071. We predict that Mrub_2572 encodes the enzyme orotate phosphoribosyltransferase (DNA coordinates 2617545..2618096 on the forward strand), which is the 5th step of the UMP biosynthesis pathway (KEGG map number 00240). It catalyzes the conversion of orotate + PRPP to orotidine 5’-phosphate. The E. coli K12 MG1655 ortholog is predicted to be b3642, which has the gene …


Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott Feb 2016

Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1710 and Mrub_1712. We predict that Mrub_1710 encodes the enzyme glycine dehydrogenase (DNA coordinates 3046168.. 3049041 on the reverse strand), which is the first step of the glycine degradation pathway (KEGG map number 00260). It catalyzes the conversion of glycine to S-Amino-methyldihydro-lipoylprotein. The E. coli K12 MG1655 ortholog is predicted to be b2903, which has the gene identifier gcvP. …