Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Crassostrea virginica

CCPO Publications

Animal Sciences

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

The Rise And Fall Of Crassostrea Virginica Oyster Reefs: The Role Of Disease And Fishing In Their Demise And A Vignette On Their Management, Eric N. Powell, John M. Klinck, Kathryn Ashton-Alcox, Eileen E. Hofmann, Jason Morson Jan 2012

The Rise And Fall Of Crassostrea Virginica Oyster Reefs: The Role Of Disease And Fishing In Their Demise And A Vignette On Their Management, Eric N. Powell, John M. Klinck, Kathryn Ashton-Alcox, Eileen E. Hofmann, Jason Morson

CCPO Publications

We describe a model designed to simulate the shell carbonate budget of an oyster reef.We identify five parameters descriptive of basic characteristics of the shell carbonate budget of a reef that limit simulation accuracy. Two describe the TAZ (taphonomically-active zone) and the distribution of shell carbonate within it. One is the taphonomic rate in the TAZ. Two determine the volume contribution of shell carbonate and the taphonomic loss rate within the reef framework. For Mid-Atlantic estuaries, model simulations suggest that reef accretion only occurs if oyster abundance is near carrying capacity. Simulations further suggest that reef accretion is infeasible ...


Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck

CCPO Publications

An oyster population model coupled with a model for Haplosporidium nelsoni, the causative agent of the oyster disease MSX, was used with salinity time-series constructed from Delaware River flow measurements to study environmentally-induced variations in the annual cycle of this disease in Delaware Bay oyster populations. Model simulations for the lower Bay (high salinity) sire reproduced the annual cycle observed in lower Delaware Bay. Simulations at both upper Bay (low salinity) and lower Bay sites produced prevalences and intensities that were consistent with field observations. At all sites, low freshwater discharge resulted in increased disease levels, whereas high freshwater discharge ...


Understanding The Success And Failure Of Oyster Populations: The Importance Of Sampled Variables And Sample Timing, Thomas M. Soniat, Eric N. Powell, Eileen E. Hofmann, John M. Klinck Jan 1998

Understanding The Success And Failure Of Oyster Populations: The Importance Of Sampled Variables And Sample Timing, Thomas M. Soniat, Eric N. Powell, Eileen E. Hofmann, John M. Klinck

CCPO Publications

One of the primary obstacles to understanding why some oyster populations are successful and others are not is the complex interaction of environmental variables with oyster physiology and with such population variables as the rates of recruitment and juvenile mortality. A numerical model is useful in investigating how population structure originates out of this complexity. We have monitored a suite of environmental conditions over an environmental gradient to document the importance of short time-scale variations in such variables as food supply, turbidity, and salinity. Then, using a coupled oyster disease population dynamics model, we examine the need for short rime-scale ...


Modeling Diseased Oyster Populations. Ii. Triggering Mechanisms For Perkinsus Marinus Epizootics, Eric N. Powell, John M. Klinck, Eileen E. Hofmann Jan 1996

Modeling Diseased Oyster Populations. Ii. Triggering Mechanisms For Perkinsus Marinus Epizootics, Eric N. Powell, John M. Klinck, Eileen E. Hofmann

CCPO Publications

Densities of Crassostrea virginica remain high enough to support substantial fisheries throughout the Gulf of Mexico despite high mortality rates produced by the endoparasite Perkinsus marinus. The infrequency of epizootics in these populations suggests that controls exist on the disease intensification process. The progression of epizootics in oyster populations, the factors that trigger epizootics, and the factors that terminate epizootics once started were investigated with a coupled oyster population—P. marinus model.

The time development of a simulated epizootic was triggered by environmental conditions that occurred and disappeared as much as t8 months prior to the onset of mortality in ...


Modeling Oyster Populations Ii. Adult Size And Reproductive Effort, E. E. Hofmann, J. M. Klinck, E. N. Powell, S. Boyles, M. Ellis Jan 1994

Modeling Oyster Populations Ii. Adult Size And Reproductive Effort, E. E. Hofmann, J. M. Klinck, E. N. Powell, S. Boyles, M. Ellis

CCPO Publications

A time-dependent model of energy flow in post-settlement oyster populations is used to examine the factors that influence adult size and reproductive effort in a particular habitat, Galveston Bay, Texas, and in habitats that extend from Laguna Madre, Texas to Chesapeake Bay. The simulated populations show that adult size and reproductive effort are determined by the allocation of net production to somatic or reproductive tissue development and the rate of food acquisition, both of which are temperature dependent. For similar food conditions, increased temperature reduces the allocation of net production to somatic tissue and increases the rate of food acquisition ...


Modeling Oyster Populations. Iv. Rates Of Mortality, Population Crashes, And Management, E. N. Powell, J. M. Klinck, E. E. Hofmann, S. M. Ray Jan 1994

Modeling Oyster Populations. Iv. Rates Of Mortality, Population Crashes, And Management, E. N. Powell, J. M. Klinck, E. E. Hofmann, S. M. Ray

CCPO Publications

A time-dependent energy-flow model was used to examine how mortality affects oyster populations over the latitudinal gradient from Galveston Bay, Texas, to Chesapeake Bay, Virginia. Simulations using different mortality rates showed that mortality is required for market-site oysters to be a component of the population's size-frequency distribution; otherwise a population of stunted individuals results. As mortality extends into the juvenile sizes, the population's size frequency shifts toward the larger sizes. In many cases adults increase despite a decrease in overall population abundance. Simulations, in which the timing of mortality varied, showed that oyster populations are more susceptible to ...