Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Climate change

2016

Earth Sciences

University of Kentucky

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Methane Emissions From Global Rice Fields: Magnitude, Spatiotemporal Patterns, And Environmental Controls, Bowen Zhang, Hanqin Tian, Wei Ren, Bo Tao, Chaoqun Lu, Jia Yang, Kamaljit Banger, Shufen Pan Sep 2016

Methane Emissions From Global Rice Fields: Magnitude, Spatiotemporal Patterns, And Environmental Controls, Bowen Zhang, Hanqin Tian, Wei Ren, Bo Tao, Chaoqun Lu, Jia Yang, Kamaljit Banger, Shufen Pan

Plant and Soil Sciences Faculty Publications

Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901–2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 ...


Effects Of Epichloë Coenophiala−Tall Fescue Symbiosis On Plant-Microbe-Soil Interactions In A Temperate Pasture, Lindsey C. Slaughter Jan 2016

Effects Of Epichloë Coenophiala−Tall Fescue Symbiosis On Plant-Microbe-Soil Interactions In A Temperate Pasture, Lindsey C. Slaughter

Theses and Dissertations--Plant and Soil Sciences

Plants interact in myriad ways with microorganisms to influence ecosystem processes such as nutrient cycling, which can regulate ecosystem response to global change. One important plant-microbe symbiosis occurs between cool-season grasses and asexual fungal Epichloë endophytes, such as tall fescue (Schedonorus arundinaceus) and Epichloë coenophiala. Because the common toxic strain of the endophyte (CTE) harms grazing livestock, non-livestock toxic endophyte (NTE) strains have been developed and are increasingly deployed in pastures. Little is known about how these symbioses impact other plant-microbe interactions and microbe-mediated soil processes in grassland ecosystems. I conducted three studies to determine how E. coenophiala presence (+) or ...