Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Swimming Against The Tide: Resilience Of A Riverine Turtle To Recurrent Extreme Environmental Events, Abigail M. Jergenson, David A. W. Miller, Lorin A. Neuman-Lee, Daniel A. Warner, Fredric J. Janzen Mar 2014

Swimming Against The Tide: Resilience Of A Riverine Turtle To Recurrent Extreme Environmental Events, Abigail M. Jergenson, David A. W. Miller, Lorin A. Neuman-Lee, Daniel A. Warner, Fredric J. Janzen

Ecology, Evolution and Organismal Biology Publications

Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. pictaexhibit resiliency to ...


Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi Jan 2014

Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi

Biological Sciences Faculty Publications

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, we ...