Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Vulnerable Species In A Changing Climate: The Genomic Response Of Antarctic Notothenioid Fishes To Predicted Oceanic Conditions As A Model Of Physiological Plasticity And Adaptive Capability, Troy James Huth Dec 2015

Vulnerable Species In A Changing Climate: The Genomic Response Of Antarctic Notothenioid Fishes To Predicted Oceanic Conditions As A Model Of Physiological Plasticity And Adaptive Capability, Troy James Huth

Theses and Dissertations

In its fifth report in 2014 the IPCC reinforced the contribution of anthropogenic CO2 to global climate change predicting widespread and significant changes to the global climate over a relatively short time scale. The polar regions, including the Southern Ocean surrounding Antarctica, were identified as ecosystems that may experience the most rapid and severe changes. As the Southern Ocean is one of the coldest and most oceanographically stable regions on earth, the endemic fauna likely have no alternative habitats available for migration. Further compounding the challenge these species will face is the substantial degree of adaptation to the extreme cold ...


Marine Population Connectivity: Range Boundaries And Climate Change, Rhiannon Leigh Rognstad Dec 2014

Marine Population Connectivity: Range Boundaries And Climate Change, Rhiannon Leigh Rognstad

Theses and Dissertations

Population connectivity, particularly in open systems, is an important metric for understanding population-level processes on both ecological and evolutionary timescales. In coastal marine systems, adults are typically sedentary and dispersal occurs primarily during a larval stage when individuals are transported in ocean currents. Because coastal marine populations exist as networks of interconnected subpopulations, variation in the magnitude and extent of population connectivity can have profound effects on population dynamics and species distribution limits. Connectivity is a complex process, affected by a multitude of factors, including adult inputs and physical dispersal, which operate at multiple scales and may interact. This dissertation ...


Thermal Ecology And Physiology Of An Intertidal Predator-Prey System: Pisaster Ochraceus And Mytilus Californianus, Cristian J. Monaco Dec 2014

Thermal Ecology And Physiology Of An Intertidal Predator-Prey System: Pisaster Ochraceus And Mytilus Californianus, Cristian J. Monaco

Theses and Dissertations

Untangling natural systems’ complexity requires understanding the mechanisms responsible for organisms’ responses to environmental change. Recently, significant advances have been made by recognizing the relevance of direct and indirect effects, which take place when multiple biotic and abiotic factors influence each other. I examined potential direct effects of environmental variables on a predator-prey interaction, as well as potential indirect effects of these variables on the interaction itself. I placed emphasis on behavioral and physiological adaptations, which would potentially contribute/modify these effects. My study system was comprised of a rocky intertidal keystone predator, the sea star Pisaster ochraceus, and its ...


Organismal Climatology: Analyzing Environmental Variability At Scales Relevant To Physiological Stress, Brian Helmuth, Bernardo R. Broitman, Lauren Yamane, Sarah E. Gilman, Katharine Mach, K. A.S. Mislan, Mark W. Denny Jan 2010

Organismal Climatology: Analyzing Environmental Variability At Scales Relevant To Physiological Stress, Brian Helmuth, Bernardo R. Broitman, Lauren Yamane, Sarah E. Gilman, Katharine Mach, K. A.S. Mislan, Mark W. Denny

Faculty Publications

Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species’ range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different ...


From Cells To Coastlines: How Can We Use Physiology To Forecast The Impacts Of Climate Change?, Brian Helmuth Jan 2009

From Cells To Coastlines: How Can We Use Physiology To Forecast The Impacts Of Climate Change?, Brian Helmuth

Faculty Publications

The interdisciplinary fields of conservation physiology, macrophysiology, and mechanistic ecological forecasting have recently emerged as means of integrating detailed physiological responses to the broader questions of ecological and evolutionary responses to global climate change. Bridging the gap between large-scale records of weather and climate (as measured by remote sensing platforms, buoys and ground-based weather stations) and the physical world as experienced by organisms (niche-level measurements) requires a mechanistic understanding of how ‘environmental signals’ (parameters such as air, surface and water temperature, food availability, water flow) are translated into signals at the scale of the organism or cell (e.g. body ...