Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Metabolism

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 30 of 42

Full-Text Articles in Life Sciences

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Impact Of Sleep And Circadian Disruption On Energy Balance And Diabetes: A Summary Of Workshop Discussions, Deanna M. Arble, Joseph Bass, Cecilia Diniz Behn, Matthew P. Butler, Etienne Challet, Charles Czeisler, Christopher M. Depner, Joel Elmquist, Paul Franken, Michael A. Grandner, Erin C. Hanlon, Alex C. Keene, Michael J. Joyner, Ilia Karatsoreos, Philip A. Kern, Samuel Klein, Christopher J. Morris, Allan I. Pack, Satchidananda Panda, Louis J. Ptacek, Naresh M. Punjabi, Paolo Sessone-Corsi, Frank A. Scheer, Richa Saxena, Elizabeth R. Seaquest, Matthew S. Thimgan, Eve Van Cauter, Kenneth P. Wright Dec 2015

Impact Of Sleep And Circadian Disruption On Energy Balance And Diabetes: A Summary Of Workshop Discussions, Deanna M. Arble, Joseph Bass, Cecilia Diniz Behn, Matthew P. Butler, Etienne Challet, Charles Czeisler, Christopher M. Depner, Joel Elmquist, Paul Franken, Michael A. Grandner, Erin C. Hanlon, Alex C. Keene, Michael J. Joyner, Ilia Karatsoreos, Philip A. Kern, Samuel Klein, Christopher J. Morris, Allan I. Pack, Satchidananda Panda, Louis J. Ptacek, Naresh M. Punjabi, Paolo Sessone-Corsi, Frank A. Scheer, Richa Saxena, Elizabeth R. Seaquest, Matthew S. Thimgan, Eve Van Cauter, Kenneth P. Wright

Biological Sciences Faculty Research and Publications

A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact …


Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter Oct 2015

Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter

Dartmouth Scholarship

Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical proper- ties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during in- terphase in all eukaryotes. Here we report on the role of …


Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder Sep 2015

Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder

Sean P. Ryder

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA …


Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine Sep 2015

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine

Dartmouth Scholarship

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an …


Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib Aug 2015

Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib

Dartmouth Scholarship

STING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING(-/-)) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING(-/-) mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal …


Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze Aug 2015

Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze

Michael Menze

In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the warming trend in tropical regions are unknown and significantly understudied due primarily to the difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs for power plants, increased physiological stress from high water temperature can lead to an increase in mortality, reduce growth, and potentially alter the community structure of fishes. Throughout this study, we employ this highly tractable system to assess how elevated thermal regimes can …


Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze Aug 2015

Tradeoffs Of Warm Adaptation In Aquatic Ectotherms: Live Fast, Die Young?, A. P. Porreca, E. Martinez, R. E. Colombo, Michael A. Menze

Faculty Research & Creative Activity

In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the warming trend in tropical regions are unknown and significantly understudied due primarily to the difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs for power plants, increased physiological stress from high water temperature can lead to an increase in mortality, reduce growth, and potentially alter the community structure of fishes. Throughout this study, we employ this highly tractable system to assess how elevated thermal regimes can …


Tradeoffs Of Warm Adaptation In Aquatic Ectotherms : Live Fast, Die Young?, A. Porreca, E. Martinez, R. Colombo, Michael Menze Aug 2015

Tradeoffs Of Warm Adaptation In Aquatic Ectotherms : Live Fast, Die Young?, A. Porreca, E. Martinez, R. Colombo, Michael Menze

Faculty Scholarship

In the face of a changing climate, questions regarding sub-lethal effects of elevated habitat temperature on the physiology of ectotherms remain unanswered. In particular, long-term responses of ectotherms to the warming trend in tropical regions are unknown and significantly understudied due primarily to the difficulties in specimen and community traceability. In freshwater lakes employed as cooling reservoirs for power plants, increased physiological stress from high water temperature can lead to an increase in mortality, reduce growth, and potentially alter the community structure of fishes. Throughout this study, we employ this highly tractable system to assess how elevated thermal regimes can …


Polyq-Dependent Rna–Protein Assemblies Control Symmetry Breaking, Changhwan Lee, Patricia Occhipinti, Amy S. Gladfelter Jul 2015

Polyq-Dependent Rna–Protein Assemblies Control Symmetry Breaking, Changhwan Lee, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

Dendritic growth in fungi and neurons requires that multiple axes of polarity are established and maintained within the same cytoplasm. We have discovered that transcripts encoding key polarity factors including a formin, Bni1, and a polarisome scaffold, Spa2, are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. This asymmetric distribution requires the mRNAs to interact with a polyQ-containing protein, Whi3, and a Pumilio protein with a low-complexity sequence, Puf2. Cells lacking Whi3 or Puf2 had severe defects in establishing new sites of polarity and failed to localize Bni1 protein. Interaction …


Saponin-Permeabilization Is Not A Viable Alternative To Isolated Mitochondria For Assessing Oxidative Metabolism In Hibernation, James Staples, Katherine E. Mathers Jul 2015

Saponin-Permeabilization Is Not A Viable Alternative To Isolated Mitochondria For Assessing Oxidative Metabolism In Hibernation, James Staples, Katherine E. Mathers

Biology Publications

Saponin permeabilization of tissue slices is increasingly popular for characterizing mitochondrial function largely because it is fast, easy, requires little tissue and leaves much of the cell intact. This technique is well described for mammalian muscle and brain, but not for liver. We sought to evaluate how saponin permeabilization reflects aspects of liver energy metabolism typically assessed in isolated mitochondria. We studied the ground squirrel (Ictidomys tridecemlineatus Mitchell), a hibernating mammal that shows profound and acute whole-animal metabolic suppression in the transition from winter euthermia to torpor. This reversible metabolic suppression is also reflected in the metabolism of isolated …


Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd Jun 2015

Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd

Dartmouth Scholarship

NfnAB catalyzes the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP+. The NfnAB complex has been hypothesized to be the main enzyme for ferredoxin oxidization in strains of Thermoanaerobacterium saccharolyticum engineered for increased ethanol production. NfnAB complex activity was detectable in crude cell extracts of T. saccharolyticum. Activity was also detected using activity staining of native PAGE gels. The nfnAB gene was deleted in different strains of T. saccharolyticum to determine its effect on end product formation. In wild-type T. saccharolyticum, deletion of nfnAB resulted in a 46% increase in H2 formation but …


Estrogen Receptor–Α In Medial Amygdala Neurons Regulates Body Weight, Pingwen Xu, Xuehong Cao, Yanlin He, Liangru Zhu, Yongjie Yang, Kenji Saito, Chunmei Wang, Xiaofeng Yan, Antentor Othrell Hinton Jr., Fang Zou, Hongfang Ding, Yan Xia, Chunling Yan, Gang Shu, San-Pin Wu, Bin Yang, Benjamin Feng, Deborah J. Clegg, Richard Demarchi, Sohaib A. Khan, Sophia Y. Tsai, Francesco J. Demayo, Qi Wu, Qingchun Tong, Yong Xu Jun 2015

Estrogen Receptor–Α In Medial Amygdala Neurons Regulates Body Weight, Pingwen Xu, Xuehong Cao, Yanlin He, Liangru Zhu, Yongjie Yang, Kenji Saito, Chunmei Wang, Xiaofeng Yan, Antentor Othrell Hinton Jr., Fang Zou, Hongfang Ding, Yan Xia, Chunling Yan, Gang Shu, San-Pin Wu, Bin Yang, Benjamin Feng, Deborah J. Clegg, Richard Demarchi, Sohaib A. Khan, Sophia Y. Tsai, Francesco J. Demayo, Qi Wu, Qingchun Tong, Yong Xu

Peer Reviewed Articles

Estrogen receptor–α (ERα) activity in the brain prevents obesity in both males and females. However, the ERα-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels of ERα. Specific deletion of the gene encoding ERα (Esr1) from SIM1 neurons, which are mostly within the MeA, caused hypoactivity and obesity in both male and female mice fed with regular chow, increased susceptibility to diet-induced obesity (DIO) in males but not in females, and blunted the body weight–lowering effects of a glucagon-like peptide-1–estrogen …


Association Between Chlorinated Pesticides In The Serum Of Prepubertal Russian Boys And Longitudinal Biomarkers Of Metabolic Function, Jane Burns, Paige Williams, Susan Korrick, Russ Hauser, Oleg Sergeyev, Boris Revich, Thuy Lam, Mary Lee Jun 2015

Association Between Chlorinated Pesticides In The Serum Of Prepubertal Russian Boys And Longitudinal Biomarkers Of Metabolic Function, Jane Burns, Paige Williams, Susan Korrick, Russ Hauser, Oleg Sergeyev, Boris Revich, Thuy Lam, Mary Lee

Mary M. Lee

Organochlorine pesticides (OCPs) have been linked to adult metabolic disorders; however, few studies have examined these associations in childhood. We prospectively evaluated the associations of baseline serum OCPs (hexachlorobenzene, beta-hexachlorocyclohexane, and p,p'-dichlorodiphenyldichloroethylene) in Russian boys with subsequent repeated measurements of serum glucose, insulin, lipids, leptin, and calculated homeostatic model assessment of insulin resistance (IR). During 2003-2005, we enrolled 499 boys aged 8-9 years in a prospective cohort; 318 had baseline serum OCPs and serum biomarkers measured at ages 10-13 years. Multivariable generalized estimating equation and mediation regression models were used to examine associations and direct and indirect (via body mass …


Identifying And Characterizing Yeast Pas Kinase 1 Substrates Reveals Regulation Of Mitochondrial And Cell Growth Pathways, Desiree Demille Jun 2015

Identifying And Characterizing Yeast Pas Kinase 1 Substrates Reveals Regulation Of Mitochondrial And Cell Growth Pathways, Desiree Demille

Theses and Dissertations

Glucose allocation is an important cellular process that is misregulated in the interrelated diseases obesity, diabetes and cancer. Cells have evolved critical mechanisms for regulating glucose allocation, one of which is sensory protein kinases. PAS kinase is a key sensory protein kinase that regulates glucose allocation in yeast, mice and man; and is a novel therapeutic target for the treatment of metabolic diseases such as obesity, diabetes and cancer. Despite its importance, the molecular mechanisms of PAS kinase function are largely unknown. Through large-scale protein-interaction studies, we have identified 93 novel binding partners for PAS kinase which help to expand …


Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd May 2015

Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd

Dartmouth Scholarship

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. …


Whole Body Fuel Use: A Preliminary Study Of Carbohydrate And Fat Oxidation During Water Exercise, Heather Gerrish, Laura Miller, Mitchell Fisher, Debra D'Acquisto May 2015

Whole Body Fuel Use: A Preliminary Study Of Carbohydrate And Fat Oxidation During Water Exercise, Heather Gerrish, Laura Miller, Mitchell Fisher, Debra D'Acquisto

Symposium Of University Research and Creative Expression (SOURCE)

The purpose of this investigation was to measure energy expenditure and whole body carbohydrate and fat oxidation during shallow water exercise (SWE; submerged to axillary level). The level of energy expenditure and the relative contribution of fuels (e.g., carbohydrate [CHO], fat) depends on the intensity of exercise effort. This descriptive study addressed two questions: (1) what is the energy expenditure of performing SWE over a range of intensities; and (2) how does the rate of CHO and fat usage change with increasingly more demanding SWE efforts. Five healthy females (ages 18 to 26 years) performed five submaximal and one maximal …


The Endogenous Molecular Clock Orchestrates The Temporal Separation Of Substrate Metabolism In Skeletal Muscle, Brian A. Hodge, Yuan Wen, Lance A. Riley, Xiping Zhang, Jonathan H. England, Brianna D. Harfmann, Elizabeth A. Schroder, Karyn A. Esser May 2015

The Endogenous Molecular Clock Orchestrates The Temporal Separation Of Substrate Metabolism In Skeletal Muscle, Brian A. Hodge, Yuan Wen, Lance A. Riley, Xiping Zhang, Jonathan H. England, Brianna D. Harfmann, Elizabeth A. Schroder, Karyn A. Esser

Physiology Faculty Publications

BACKGROUND: Skeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions. The purpose of this study was to identify metabolic genes that are expressed in a circadian manner and determine if these genes are regulated downstream of the intrinsic molecular clock by …


Saponin-Permeabilization Is Not A Viable Alternative To Isolated Mitochondria For Assessing Oxidative Metabolism In Hibernation, Katherine E. Mathers, James F. Staples May 2015

Saponin-Permeabilization Is Not A Viable Alternative To Isolated Mitochondria For Assessing Oxidative Metabolism In Hibernation, Katherine E. Mathers, James F. Staples

Biology Publications

Saponin permeabilization of tissue slices is increasingly popular for characterizing mitochondrial function largely because it is fast, easy, requires little tissue and leaves much of the cell intact. This technique is well described for mammalian muscle and brain, but not for liver. We sought to evaluate how saponin permeabilization reflects aspects of liver energy metabolism typically assessed in isolated mitochondria. We studied the ground squirrel (Ictidomys tridecemlineatus Mitchell), a hibernating mammal that shows profound and acute whole-animal metabolic suppression in the transition from winter euthermia to torpor. This reversible metabolic suppression is also reflected in the metabolism of isolated liver …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Analyzation Of Metabolic Reprogramming In Drug-Resistant Mcf-7 Cells, Derick Han, Ho Leung, Andrew Vo May 2015

Analyzation Of Metabolic Reprogramming In Drug-Resistant Mcf-7 Cells, Derick Han, Ho Leung, Andrew Vo

Student Scholar Symposium Abstracts and Posters

The Warburg effect states that cancer cells mainly receive their energy from anaerobic glycolysis. Thus, mitochondria play a different role in the metabolism of cancer cells as opposed to normal, healthy cells. In chemotherapy, there is always a chance of the cancer regressing. Making drug-resistant cancer cells to analyze their metabolism may change how cancer is treated. This study aimed to create drug-resistant MCF-7 cell lines with doxorubicin in order to determine the metabolic changes that have occurred in the process of becoming resistant to drug treatments.


Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee May 2015

Cytoskeletal Dynamics: A View From The Membrane, Magdalena Bezanilla, Amy S. Gladfelter, David R. Kovar, Wei-Lih Lee

Dartmouth Scholarship

Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.


Metabolite Sensing In Eukaryotic Mrna Biology, Carina Clingman, Sean Ryder May 2015

Metabolite Sensing In Eukaryotic Mrna Biology, Carina Clingman, Sean Ryder

Sean P. Ryder

All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-messenger systems. More recent studies reveal that metabolites also affect post-transcriptional regulatory mechanisms. Here, we review the increasing number of connections between metabolism and post-transcriptional regulation in eukaryotic organisms. First, we present evidence that riboswitches, a common mechanism of metabolite sensing in bacteria, also function in eukaryotes. Next, we review an example of a double stranded RNA modifying enzyme that directly interacts with a metabolite, suggesting a link between RNA editing and metabolic state. Finally, …


Elucidating The Impact Of Roseophage On Roseobacter Metabolism And Marine Nutrient Cycles, Nana Yaw Darko Ankrah May 2015

Elucidating The Impact Of Roseophage On Roseobacter Metabolism And Marine Nutrient Cycles, Nana Yaw Darko Ankrah

Doctoral Dissertations

As the most abundant biological entities in marine environments, viruses are an important component of marine food webs. The activity of viruses contributes significantly to the mortality of marine microorganisms, ultimately influencing biological function and chemical composition of aquatic systems by impacting species composition and flow of carbon, nitrogen and other nutrients. Despite the growing recognition that viral activity contributes to marine biogeochemical cycles, the extent to which virus infection reshapes host metabolism and the effect of this alteration on the composition of host lysate remains poorly understood. Additionally, the degree to which natural bacterioplankton communities metabolise the released lysate …


Metabolic Theory Explains Latitudinal Variation In Common Carp Populations And Predicts Responses To Climate Change, Michael J. Weber, Michael L. Brown, David H. Wahl, Daniel E. Shoup Apr 2015

Metabolic Theory Explains Latitudinal Variation In Common Carp Populations And Predicts Responses To Climate Change, Michael J. Weber, Michael L. Brown, David H. Wahl, Daniel E. Shoup

Natural Resource Management Faculty Publications

Climate change is expected to alter temperature regimes experienced by fishes, which may also alter life history traits. However, predicting population-level responses to climate change has been difficult. Metabolic theory of ecology has been developed to explain how metabolism controls a variety of ecological processes, including life history attributes. Thus, this theory may be a useful tool for predicting fish population responses to climate change. To understand how climate change may alter freshwater fish life history, we measured population characteristics (e.g., recruitment, growth, body size, and mortality) of 21 North American common carp Cyprinus carpio populations spanning a latitudinal gradient …


Metabolic Effects Of Bariatric Surgery In Mouse Models Of Circadian Disruption, Deanna M. Arble, Darleen A. Sandoval, Fred W. Turek, Stephen C. Woods, Randy J. Seeley Apr 2015

Metabolic Effects Of Bariatric Surgery In Mouse Models Of Circadian Disruption, Deanna M. Arble, Darleen A. Sandoval, Fred W. Turek, Stephen C. Woods, Randy J. Seeley

Biological Sciences Faculty Research and Publications

Background/Objectives:

Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity.

Subjects/Methods:

Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption.

Results:

VSG led to a reduction in body weight and fat mass in …


The Effects Of Suspended Sediment On Japanese Medaka (Oryzias Latipes) And Mosquitofish (Gambusia Affinis) Metabolism, Brandy L. Bossle, Ruben R. Goforth, Shem D. Unger, Olin E. Rhodes Jr. Apr 2015

The Effects Of Suspended Sediment On Japanese Medaka (Oryzias Latipes) And Mosquitofish (Gambusia Affinis) Metabolism, Brandy L. Bossle, Ruben R. Goforth, Shem D. Unger, Olin E. Rhodes Jr.

Journal of the South Carolina Academy of Science

Sedimentation is recognized as a significant environmental stressor in aquatic ecosystems and high amounts of suspended sediments (SS) in streams are known to negatively affect aquatic organisms. In particular, it has been hypothesized that many fish species mayexhibit increased respiration rates when exposed to elevated SS. To evaluate this hypothesis, we evaluated the acute response (3 hour exposure) of two small, freshwater fish species exposed to high suspended sediment loads using experimental respirometry chambers which measure oxygen consumption as a proxy of metabolism. Our results indicate that Japanese Medaka (Oryzias latipes) did not exhibit a significantly greater oxygen …


Identification Of A Family Of Fatty Acid-Speciated Sonic Hedgehog Proteins, Whose Members Display Differential Biological Properties, Jun Long, Robert Tokhunts, William M. Old, Stephane Houel, Jezabel Rodgriguez-Blanco, Samer Singh, Neal Schilling, Anthony J. Capobianco, Natalie G. Ahn, David J. Robbins Mar 2015

Identification Of A Family Of Fatty Acid-Speciated Sonic Hedgehog Proteins, Whose Members Display Differential Biological Properties, Jun Long, Robert Tokhunts, William M. Old, Stephane Houel, Jezabel Rodgriguez-Blanco, Samer Singh, Neal Schilling, Anthony J. Capobianco, Natalie G. Ahn, David J. Robbins

Dartmouth Scholarship

Hedgehog (HH) proteins are proteolytically processed into a biologically active form that is covalently modified by cholesterol and palmitate. However, most studies of HH biogenesis have characterized protein from cells in which HH is overexpressed. We purified Sonic Hedgehog (SHH) from cells expressing physiologically relevant levels and showed that it was more potent than SHH isolated from overexpressing cells. Furthermore, the SHH in our preparations was modified with a diverse spectrum of fatty acids on its amino termini, and this spectrum of fatty acids varied dramatically depending on the growth conditions of the cells. The fatty acid composition of SHH …


Mechanisms Underlying Weight Loss And Metabolic Improvements In Rodent Models Of Bariatric Surgery, Deanna M. Arble, Darleen A. Sandoval, Randy J. Seeley Feb 2015

Mechanisms Underlying Weight Loss And Metabolic Improvements In Rodent Models Of Bariatric Surgery, Deanna M. Arble, Darleen A. Sandoval, Randy J. Seeley

Biological Sciences Faculty Research and Publications

Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these ‘metabolic’ surgical procedures. Here we review data from animal models and how …


Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield Jan 2015

Systems Level Analysis Of Systemic Sclerosis Shows A Network Of Immune And Profibrotic Pathways Connected With Genetic Polymorphisms, J. Matthew Mahoney, Jaclyn Taroni, Viktor Martyanov, Tammara A. A. Wood, Casey S. Greene, Patricia A. Pioli, Monique E. Hinchcliff, Michael L. Whitfield

Dartmouth Scholarship

Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6-12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes …