Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González Nov 2014

Differential Effects Of Canopy Trimming And Litter Deposition On Litterfall And Nutrient Dynamics In A Wet Subtropical Forest, Steven J. Hall, Whendee L. Silver, Grizelle González

Steven J. Hall

Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation experiment to explore the separate and combined effects of canopy trimming and litter deposition on litterfall rates and litter nutrient concentrations and content. The deposition of fine litter associated with the treatments was equivalent to more than two times the annual fine litterfall mass and nutrient content in control …


Breaking The Enzymatic Latch: Impacts Of Reducing Conditions On Hydrolytic Enzyme Activity In Tropical Forest Soils, Steven J. Hall, Jonathan Treffkorn, Whendee L. Silver Oct 2014

Breaking The Enzymatic Latch: Impacts Of Reducing Conditions On Hydrolytic Enzyme Activity In Tropical Forest Soils, Steven J. Hall, Jonathan Treffkorn, Whendee L. Silver

Steven J. Hall

The enzymatic latch hypothesis proposes that oxygen (O2) limitation promotes wetland carbon (C) storage by indirectly decreasing the activities of hydrolytic enzymes that decompose organic matter. Humid tropical forest soils are often characterized by low and fluctuating redox conditions and harbor a large pool of organic matter, yet they also have the fastest decomposition rates globally. We tested the enzymatic latch hypothesis across a soil O2 gradient in the Luquillo Experimental Forest, Puerto Rico, USA. Enzyme activities expressed on a soil mass basis did not systematically decline across a landscape O2 gradient, nor did phenolics accumulate, the proposed mechanism of …