Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Life Sciences

Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud Jan 2024

Mechanistic Analysis Of Four-Way Dna Junctions And Cytokine-Binding Aptamers For Therapeutic Interventions, Roaa S. Mahmoud

Theses and Dissertations

DNA is inherently dynamic and topologically diverse and can fold into many different structures. Besides the canonical Watson-Crick structure, other higher-order structures such as G-quadruplexes (G4), i-motifs (iM), and four-way DNA junctions are possible. Although these high-order DNA structures are known to form transiently, they are important due to the crucial roles they play in many cellular processes including DNA replication, recombination, and repair. Among these DNA structures, 4-way junctions (also known as Holliday junctions, HJ) which are formed during the repair of double-strand DNA breaks (DSBs) and interact with proteins have garnered significant attention due to their central role …


Biomolecular Function From Structural Snapshots, Roshanak Etemadpour Dec 2023

Biomolecular Function From Structural Snapshots, Roshanak Etemadpour

Theses and Dissertations

Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation's free energy to the conformation's occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) …


A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams Dec 2021

A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams

Theses and Dissertations

Calmodulin is a prevalent calcium sensing protein found in all cells. Three genes exist for calmodulin and all three of these genes encode for the exact same protein sequence. Recently mutations in the amino acid sequence of calmodulin have been identified in living human patients. Thus far, patients harboring these mutations in the calmodulin sequence have only displayed an altered cardiac related phenotype. Calcineurin is involved in many key physiological processes and its activity is regulated by calcium and calmodulin. In order to assess whether or not calcineurin contributes to calmodulinopathy (a pathological state arising from dysfunctional calmodulin), a comprehensive …


Study Of Binding Induced Mechanical Stabilization Of Proteins Using A Single Molecule Approach, Narayan Prasad Dahal Aug 2021

Study Of Binding Induced Mechanical Stabilization Of Proteins Using A Single Molecule Approach, Narayan Prasad Dahal

Theses and Dissertations

Proteins operating under force are involved in several biological processes and perform multiple roles. While the structures and roles of numerous proteins are ubiquitous, their involvement in binding-induced stabilization is currently poorly understood. Most protein systems operating under force interact with their binding partners in a force-dependent manner. Such systems are related to bacterial adhesion, cellular mechano-transduction, and muscle contraction. With a goal of understanding mechanical stability induced through ligand binding, I used single-molecule magnetic tweezers to study several protein systems. This approach involves protein engineering and hetero-covalent attachment chemistry, which, combined with magnetic tweezers, allows us to characterize the …


Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki May 2021

Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki

Theses and Dissertations

Proteins are of high interest in biophysics research due to the important roles they play within cells, such as sensing of chemical (ions and small molecules) and physical (e.g., light) stimuli, providing structure, transporting ions/molecules, signaling, and intercellular communication. The studies described in this dissertation focus on a particular type of membrane proteins known as G protein-coupled receptors (GPCR), which play a key role in cellular response to external stimuli. We used the sterile 2 α-factor mating pheromone receptor (Ste2), a prototypical class D GPCR present within Saccharomyces cerevisiae (baker’s yeast). Ste2 is responsible for initiating the second messenger signal …


A Computational Investigation Of The Biophysical Mechanisms Underlying Thermotaxis In The Afd Neurons Of Caenorhabditis Elegans, Zachary Mobille Mar 2021

A Computational Investigation Of The Biophysical Mechanisms Underlying Thermotaxis In The Afd Neurons Of Caenorhabditis Elegans, Zachary Mobille

Theses and Dissertations

Thermotaxis in the nematode Caenorhabditis elegans (C. elegans) is studied at the cellular scale of the amphid finger-like ciliated (AFD) neurons, which have previously been shown to be essential for thermoreception. The voltage and calcium signals of AFD during temperature stimuli are described with ordinary differential equations. The primary calcium model is a modified version of that published by Kuramochi and Doi in 2017 to explain the calcium responses of the chemosensitive amphid single-ciliated right (ASER) neuron to fluctuations in extracellular salt concentration. To account for the effects of temperature, changes to the stimuli conditions under which inactivation takes place …


Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen Jan 2021

Muscarinic Excitation Of Dopamine Neurons In The Ventral Tegmental Area Via Activation Of A Trpc-Like Cation Conductance, Yu Tzu Chen

Theses and Dissertations

Dopaminergic (DA) neurons in the ventral tegmental area (VTA) play a crucial role in reward and motivational behaviors, including the development of drug addictions. VTA DA neurons receive excitatory cholinergic inputs from the mesopontine tegmentum. Blockage of the M5 muscarinic receptor in DA neurons has been shown to attenuate drug-induced DA release and abuse-related behaviors, but the molecular mechanism is unknown. In this study, experiments were designed to identify the electrophysiological effects of muscarinic agonism in the modulation of action potential kinetics and firing patterns in VTA DA neurons of mice. Pharmacology of the muscarinic receptor-evoked current was also characterized. …


Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti Jan 2021

Interclass Gpcr Heteromerization Affects Localization And Trafficking, Rudy Toneatti

Theses and Dissertations

Class A serotonin (5-hydroxytryptamine) 2A (5-HT2AR) and class C metabotropic glutamate 2 receptors (mGluR2) are seven transmembrane receptors (7TMRs or G protein-coupled receptors – GPCRs) involved in multiple neuropsychiatric disorders including schizophrenia. Previous findings from our laboratory reported that 5-HT2AR and mGluR2 are dysregulated in the prefrontal cortex of patients suffering from this psychiatric condition, although 5-HT2AR’s expression was recovered in antipsychotic-medicated patients. Genome-wide association studies on schizophrenia reported that endosomal trafficking that regulates cell surface abundance of another 7TMR implicated in this disease (dopamine D2 receptor) can be altered. Ligand-activated receptors, including the …


Rapid Diffusion Observed In Microcrystals By X-Ray Free Electron Laser Mix-And-Inject Serial Crystallography, Tek Narsingh Malla Dec 2020

Rapid Diffusion Observed In Microcrystals By X-Ray Free Electron Laser Mix-And-Inject Serial Crystallography, Tek Narsingh Malla

Theses and Dissertations

With time resolved X-ray crystallography (TRX), it is possible to follow reaction progress in real time. The time resolution is achieved by initiating reaction in crystal prior to X-ray exposure, and then collecting diffraction pattern at different time delays. Time resolved serial femtosecond crystallography (TR-SFX) at X-ray free electron laser (XFELs) allows damage free data collection from microcrystals. Mix-and-inject serial crystallography (MISC) is a type of TR-SFX established at XFELs. In MISC, reaction in enzymatic crystals is triggered by mixing with a substrate, and the resulting structural changes are probed by XFEL pulses.Enzymatic reactions are of great interest due to …


Pump-Probe And Mix-And-Inject Experiments At X-Ray Free Electron Lasers, Suraj Pandey Dec 2020

Pump-Probe And Mix-And-Inject Experiments At X-Ray Free Electron Lasers, Suraj Pandey

Theses and Dissertations

Time resolved serial femtosecond crystallography (TR-SFX) utilizes X-ray crystallography to visualize the reaction of molecules in real time at the atomic level. Crystals of biological macromolecules are exposed to powerful X-ray pulses. The X-ray radiation emitted by the crystal is then measured by an X-ray sensitive area detector that produces an image called a diffraction pattern. These patterns are analyzed to determine a three-dimensional atomic structure of the biological macromolecule.The ultimate goal of TR-SFX is to make a “molecular movie” that shows the reaction dynamics of a biological process. For this, a reaction is started in a macromolecular crystal and …


Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal Dec 2020

Macromolecular Structure Determination At X-Ray Free Electron Lasers From Single-Particle Imaging To Time-Resolved X-Ray Crystallography, Ishwor Poudyal

Theses and Dissertations

X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense X-ray pulses which are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns from many tilts of a molecule relative to the X-ray beam, the three-dimensional electron density can be reconstructed ab-initio. The resolution and therefore the information content of the data will ultimately depend largely on the number of patterns collected at the experiment. We estimate the number of diffraction patterns required …


Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus Aug 2020

Snow-Albedo Feedback In Northern Alaska: How Vegetation Influences Snowmelt, Lucas C. Reckhaus

Theses and Dissertations

This paper investigates how the snow-albedo feedback mechanism of the arctic is changing in response to rising climate temperatures. Specifically, the interplay of vegetation and snowmelt, and how these two variables can be correlated. This has the potential to refine climate modelling of the spring transition season. Research was conducted at the ecoregion scale in northern Alaska from 2000 to 2020. Each ecoregion is defined by distinct topographic and ecological conditions, allowing for meaningful contrast between the patterns of spring albedo transition across surface conditions and vegetation types. The five most northerly ecoregions of Alaska are chosen as they encompass …


An Assessment Of Bsa Protein Hydrogel Biocompatibility In The Vertebrate Intestinal Tract, Ryan Joseph Garde Aug 2019

An Assessment Of Bsa Protein Hydrogel Biocompatibility In The Vertebrate Intestinal Tract, Ryan Joseph Garde

Theses and Dissertations

The fields of biomedicine and pharmacology have a mission to design methods to treat disease while minimizing adverse side effects using novel drug delivery systems. In developing new therapeutic systems, it is crucial to test that drug delivery systems target pathological cells and tissue and is non-toxic in healthy tissue. One promising method for targeted drug delivery is the use of hydrogels as carriers. Here, we studied the effects of bovine serum albumin (BSA) hydrogel consumption to assess the potential for hydrogel use in treating intestinal disease via oral administration. We investigated intestinal architecture and cell populations following hydrogel treatments …


Electrostatic Networks And Mechanisms Of Δph-Dependent Gating In The Human Voltage-Gated Proton Channel Hv1, Ashley L. Bennett Jan 2019

Electrostatic Networks And Mechanisms Of Δph-Dependent Gating In The Human Voltage-Gated Proton Channel Hv1, Ashley L. Bennett

Theses and Dissertations

The structure of the voltage-gated proton (H+) channel Hv1 is homologous to the voltage sensor domain (VSD) of tetrameric voltage-gated Na+, K+ and Ca2+ channels (VGCs), but lacks a pore domain and instead forms a homodimer. Similar to other VSD proteins, Hv1 is gated by changes in membrane potential (V), but unlike VGCs, voltage-dependent gating in Hv1 is modulated by changes in the transmembrane pH gradient (DpH = pHo - pHi). In Hv1, pHo or pHi changes shift the open probability (POPEN)-V relation by ~40 mV per …


Interactions Of Viral And Cellular Helicases, Megan Josephine Corby May 2018

Interactions Of Viral And Cellular Helicases, Megan Josephine Corby

Theses and Dissertations

The innate immune system is a part of the first line of defense against virus infection. An important subset of the innate immune system consists of a group of intracellular pattern recognition receptors (PRRs) which recognize conserved features of bacteria and viruses and initiate an interferon response. The RIG-I like receptors (RLRs) are PRRs that bind to RNA viruses (such as hepatitis c virus) and signal through the adaptor mitochondrial anti-viral signaling protein (MAVS).

Hepatitis C virus (HCV) is a small enveloped RNA virus that belongs to the flaviviridae family of viruses. HCV infects hepatocytes and can cause a persistent …


Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood May 2018

Time-Resolved Structural Enzymology At X-Ray Free Electron Lasers, Tyler Norwood

Theses and Dissertations

Within the last decade, X-ray Free Electron Lasers (XFELs) have emerged across the world. These XFELs produce X-ray pulses with a duration on the order of femtoseconds, each of which contains 1012 photons. Before the XFEL, the brightest X-ray sources were 3rd generation synchrotrons. While these facilities are still very important for many experiments, XFELs allow for time-resolved experiments with femtosecond time resolution and mixing experiments that are not possible at the synchrotron. Enzymatic processes have promising prospects for medicine which use proteins as drug targets and enhance our understanding of these important biomolecules.

A number of procedures are involved …


Nicotinic Acetylcholine Receptor Dependent Effects Of Nicotine On Hek293t And Hbo Cells, James D. Larsen Jan 2018

Nicotinic Acetylcholine Receptor Dependent Effects Of Nicotine On Hek293t And Hbo Cells, James D. Larsen

Theses and Dissertations

T2R receptors are the classical bitter taste receptors which detect and transduce bitter taste in a subset of taste receptor cells (TRCs). The TRPM5-dependent T2Rs are G-protein coupled receptors (GPCRs) and are linked to G protein, gustducin to initiate an intracellular signaling cascade for the transduction of bitter tastants. Nicotine is bitter. However, at present the transduction mechanisms for the detection of nicotine in are poorly understood. Previous studies from our laboratory using TRPM5 knockout (KO) mice demonstrated that the T2R pathway is insufficient in explaining the taste perception of nicotine. TRPM5 KO mice elicited chorda tympani (CT) taste nerve …


Signaling Through Homomeric And Heteromeric Cannabinoid Cb1 Receptors, Guoqing Xiang Jan 2018

Signaling Through Homomeric And Heteromeric Cannabinoid Cb1 Receptors, Guoqing Xiang

Theses and Dissertations

Cannabis (Marijuana) has multiple effects on the human body, such as analgesia, euphoria and memory impairment. Delta-9 tetrahydrocannabinol (D9-THC), the active ingredient in cannabis, binds to cannabinoid receptors, seven-transmembrane G protein-coupled receptors (GPCRs) that mediate a variety of physiological functions. GPCRs were believed to function only in homomeric forms, however, recent findings show that different GPCRs can also form heteromeric complexes that may expand their signaling properties. In this study, we focused on Cannabinoid CB1 receptor (CB1R) heteromers with the mu-opioid receptor (MOR) and the Dopamine type 2 receptor (D2R), respectively. We utilized a variety of techniques, such as the …


Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh Aug 2017

Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh

Theses and Dissertations

Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of adult vision loss. Although a great deal of progress has been made in ophthalmological examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, there still remain outstanding questions regarding the molecular and biochemical changes involved. To discover the biochemical mechanisms underlying the development and progression of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal models provide a suitable resource for temporal detection …


The Mechanistic Requirements Of Passive H+ Import Through The Na, K-Atpase, Kevin S. Stanley Jun 2017

The Mechanistic Requirements Of Passive H+ Import Through The Na, K-Atpase, Kevin S. Stanley

Theses and Dissertations

This work focuses on the elucidation of the mechanism of passive proton import through the Na,K-ATPase. This enzyme uses the energy in ATP hydrolysis to exchange three intracellular Na+ for two extracellular K+ to maintain ion gradients within the cell, and while in the absence of physiological external Na+ and K+, the phosphorylated externally open (E2P) conformation passively imports protons, generating an inward current (IH). Chapter one reports on the effects of intracellular cations and nucleotides to shift the Na,K-ATPase into the E2P conformation. We identified that a combination of either internal Na+ and ATP or K+ and Pi. In …


Investigation Of Membrane Receptors’ Oligomers Using Fluorescence Resonance Energy Transfer And Multiphoton Microscopy In Living Cells, Ashish K. Mishra May 2017

Investigation Of Membrane Receptors’ Oligomers Using Fluorescence Resonance Energy Transfer And Multiphoton Microscopy In Living Cells, Ashish K. Mishra

Theses and Dissertations

Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc.

We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Förster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 …


N-Alkyl 4-Methylamphetamine Enantiomers And The Implication For Potential Modulation Of Abuse Liability And Enhancement Of Psychoactive Drug Targeting., Ramsey Sitta Jan 2017

N-Alkyl 4-Methylamphetamine Enantiomers And The Implication For Potential Modulation Of Abuse Liability And Enhancement Of Psychoactive Drug Targeting., Ramsey Sitta

Theses and Dissertations

Drugs of abuse have a long history in humanity. Currently however, a subject of great interest is the phenylalkylamine family of drugs. Not only is the abuse liability of interest but also the potential therapeutic expansion of the capabilities of this family of drugs by utilizing the unique stereospecific effects of the newly discovered hybrid compounds. Based upon prior data of N-Alkyl 4-MA the enantiomers of N-Methyl, N-Ethyl, and N-Propyl were analyzed in hDAT, hNET, and hSERT. It was found that there was a negative correlation between chain length and potency and dopaminergic component. In agreement with the currently established …


Identification Of Expression And Function Of The Glucagon-Like Peptide-1 Receptor In Gastrointestinal Smooth Muscle, Alexander T. May Jan 2017

Identification Of Expression And Function Of The Glucagon-Like Peptide-1 Receptor In Gastrointestinal Smooth Muscle, Alexander T. May

Theses and Dissertations

In response to ingestion of nutrients, enteroendocrine L cells secrete the incretin hormone, glucagon-like peptide-1 (GLP-1), to enhance glucose-dependent insulin release. Therapies related to GLP-1 are approved for type 2 diabetes. The GLP-1 receptor (GLP-1R) is expressed in cells of the gastrointestinal tract and elsewhere. In pancreatic beta cells, GLP-1R are coupled to the Gs/cAMP/PKA pathway. The expression and function of GLP-1R in gastrointestinal smooth muscle are not known. Aim. To test the hypothesis that GLP-1 regulates smooth muscle function by acting on GLP-1R expressed on smooth muscle. Methods. Smooth muscle cells (SMC) were isolated and cultured. Expression of GLP-1R …


Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo Dec 2016

Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo

Theses and Dissertations

The problem of determining the structure of a biomolecule, when all the evidence from experiment consists of individual diffraction patterns from random particle orientations, is the central theoretical problem with an XFEL. One of the methods proposed is a calculation over all measured diffraction patterns of the average angular correlations between pairs of points on the diffraction patterns. It is possible to construct from these a matrix B characterized by angular momentum quantum number l, and whose elements are characterized by radii q and q’ of the resolution shells. If matrix B is considered as dot product of vectors, which …


Structural And Functional Characterization Of Acetoacetate Decarboxylase-Like Enzymes, Lisa Mueller Aug 2016

Structural And Functional Characterization Of Acetoacetate Decarboxylase-Like Enzymes, Lisa Mueller

Theses and Dissertations

The acetatoacetate decarboxylase-like superfamily (ADCSF) is a largely unexplored group of enzymes that may be a potential source of new biocatalysts. Bioinformatic analysis has grouped these approximately 2000 enzymes into seven different families based on comparison of predicted active site residues. To date, only the prototypical ADCs (Family I) that catalyze the decarboxylation of acetoacetate have been studied. Analysis of gene context suggests that Family V contains predominantly enzymes predicted to be involved in secondary metabolism. On average, these share about 20% sequence identity to the true ADCs. To learn more about the diversity of chemistries performed by members of …


High Affinity Block Of Icl,Swell By Thiol-Reactive Small Molecules, Sung H. Park Jan 2016

High Affinity Block Of Icl,Swell By Thiol-Reactive Small Molecules, Sung H. Park

Theses and Dissertations

Ebselen (Ebs) is considered as a glutathione peroxidase (GPx) mimetic and primarily thought to function by scavenging intracellular reactive oxygen species (ROS). Previous to our work, Deng et al. (2010a) demonstrated complete block of ICl,swell with 15 microM Ebs following endothelin-1 (ET-1) induced activation of the current in cardiomyocytes. This block was presumed to take effect mainly via the quenching of ROS. Nonetheless, our work with DI TNC1 astrocytes strongly emphasizes that Ebs might function by an alternative mechanism based on its kinetic profile in blocking ICl,swell. Our experiments showed that 45 nM Ebs can fully block …


A Mechanistic Study Of An Ipsc Model For Leigh’S Disease Caused By Mtdna Mutataion (8993 T>G), John P. Galdun Jan 2016

A Mechanistic Study Of An Ipsc Model For Leigh’S Disease Caused By Mtdna Mutataion (8993 T>G), John P. Galdun

Theses and Dissertations

Mitochondrial diseases encompass a broad range of devastating disorders that typically affect tissues with high-energy requirements. These disorders have been difficult to diagnose and research because of the complexity of mitochondrial genetics, and the large variability seen among patient populations. We have devised and carried out a mechanistic study to generate a cell based model for Leigh’s disease caused by mitochondrial DNA mutation 8993 T>G. Leigh’s disease is a multi-organ system disorder that depends heavily on the mutation burden seen within various tissues. Using new reprogramming and sequencing technologies, we were able to show that Leigh’s disease patient fibroblasts …


Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii Jan 2016

Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii

Theses and Dissertations

Thrombin is the key protease that regulates hemostasis; the delicate balance between procoagulation and anticoagulation of blood. In clotting disorders, like deep vein thrombosis or pulmonary embolism, procoagulation is up-regulated, but propagation of clotting can be inhibited with drugs targeting the proteases involved, like thrombin. Such drugs however, have serious side effects (e.g., excessive bleeding) and some require monitoring during the course of treatment. The reason for these side effects is the mechanism by which the drugs’ act. The two major mechanisms are direct orthosteric and indirect allosteric inhibition, which will completely abolish the protease’s activity. Herein we sought an …


Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi Dec 2015

Theoretical Investigation Of Interactions And Relaxation In Biological Macromolecules, Koki Yokoi

Theses and Dissertations

One of the major challenges posed to our quantitative understanding of structure, dynamics, and function of biological macromolecules has been the high level of complexity of biological structures. In the present work, we studied interactions between G protein-coupled receptors (GPCRs), and also introduced a theoretical model of relaxation in complex systems, in order to help understand interactions and relaxation in biological macromolecules.

GPCRs are the largest and most diverse family of membrane receptors that play key roles in mediating signal transduction between outside and inside of a cell. Oligomerization of GPCRs and its possible role in function and signaling currently …


Porphyrin As A Spectroscopic Probe Of Net Electric Fields In Heme Proteins, Hannah Elizabeth Wagie Dec 2015

Porphyrin As A Spectroscopic Probe Of Net Electric Fields In Heme Proteins, Hannah Elizabeth Wagie

Theses and Dissertations

Heme proteins have diverse functions as well as varied structures but share the same organic, conjugated cofactor. Similarly varied approaches have been taken to deduce how heme can take on different roles based on its protein environment. A unique approach is to view the protein matrix as a constellation of point charges that generates a defined, reproducible, net internal electric field that has influence over the electronic properties of the heme cofactor. This work considers how porphyrins, the basic chromophore building block of heme, can be used as a native spectroscopic sensor of internal electric field at the active site …