Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck

CCPO Publications

An oyster population model coupled with a model for Haplosporidium nelsoni, the causative agent of the oyster disease MSX, was used with salinity time-series constructed from Delaware River flow measurements to study environmentally-induced variations in the annual cycle of this disease in Delaware Bay oyster populations. Model simulations for the lower Bay (high salinity) sire reproduced the annual cycle observed in lower Delaware Bay. Simulations at both upper Bay (low salinity) and lower Bay sites produced prevalences and intensities that were consistent with field observations. At all sites, low freshwater discharge resulted in increased disease levels, whereas high freshwater …


Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. I. Model Development, Implementation, And Verification, Susan Ford, Eric Powell, John Klinck, Eileen Hofmann Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. I. Model Development, Implementation, And Verification, Susan Ford, Eric Powell, John Klinck, Eileen Hofmann

CCPO Publications

A mathematical model simulating the host-parasite-environmental interactions of eastern oysters (Crassostrea virginica) and the pathogen, Haplosporidium nelsoni, which causes MSX disease, has been developed. The model has 2 components. One replicates the infection process within the oyster and the other simulates transmission. The infection-development component relies on basic physiological processes of both host and parasite, modified by the environment, to reproduce the observed annual prevalence cycle of H. nelsoni. Equations describing these rates were constructed using data from long-term field observations, and field and laboratory experiments. In the model, salinity and temperature have direct effects upon …


Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Iii. Regional Application And The Problem Of Transmission, Eric N. Powell, John M. Klinck, Susan E. Ford, Eileen E. Hofmann, Stephen J. Jordon Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Iii. Regional Application And The Problem Of Transmission, Eric N. Powell, John M. Klinck, Susan E. Ford, Eileen E. Hofmann, Stephen J. Jordon

CCPO Publications

A model of transmission for Haplosporidium nelsoni, the disease agent for MSX disease, is developed and applied to sites in Delaware Bay and Chesapeake Bay. The environmental factors that force the oyster population- H. nelsoni model are salinity, temperature, food, and total suspended solids. The simulated development of MSX disease was verified using 3 time series of disease prevalence and intensity: 1960 to 1970 and 1980 to 1990 for Delaware Bay, and 1980 to 1994 for Chesapeake Bay, and for a series of sites covering the salinity gradient in each bay. Additional simulations consider the implications of assumptions made …


Modeling The Effects Of Doliolids On The Plankton Community Structure Of The Southeastern Us Continental Shelf, A. G. Edward Haskell, Eileen E. Hofmann, Gustav-Adolf Paffenhofer, Peter G. Verity Jan 1999

Modeling The Effects Of Doliolids On The Plankton Community Structure Of The Southeastern Us Continental Shelf, A. G. Edward Haskell, Eileen E. Hofmann, Gustav-Adolf Paffenhofer, Peter G. Verity

CCPO Publications

A model of the lower trophic levels that consists of a system of coupled ordinary differential equations was developed to investigate the time-dependent behavior of doliolid populations associated with upwelling features on the outer southeastern US continental shelf. Model equations describe the interactions of doliolids with two phytoplankton size fractions, five copepod developmental stages and a detrital pool. Additional equations describe nitrate and ammonia. Model dynamics are based primarily upon data obtained from field and laboratory experiments for southeastern US continental shelf plankton populations. Variations on a reference simulation, which represents average upwelling conditions without doliolids, were carried out to …