Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

CCPO Publications

Aquaculture and Fisheries

Haplosporidium nelsoni MSX

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. Ii. Salinity Effects, Michelle C. Paraso, Susan E. Ford, Eric N. Powell, Eileen E. Hofmann, John M. Klinck

CCPO Publications

An oyster population model coupled with a model for Haplosporidium nelsoni, the causative agent of the oyster disease MSX, was used with salinity time-series constructed from Delaware River flow measurements to study environmentally-induced variations in the annual cycle of this disease in Delaware Bay oyster populations. Model simulations for the lower Bay (high salinity) sire reproduced the annual cycle observed in lower Delaware Bay. Simulations at both upper Bay (low salinity) and lower Bay sites produced prevalences and intensities that were consistent with field observations. At all sites, low freshwater discharge resulted in increased disease levels, whereas high freshwater …


Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. I. Model Development, Implementation, And Verification, Susan Ford, Eric Powell, John Klinck, Eileen Hofmann Jan 1999

Modeling The Msx Parasite In Eastern Oyster (Crassostrea Virginica) Populations. I. Model Development, Implementation, And Verification, Susan Ford, Eric Powell, John Klinck, Eileen Hofmann

CCPO Publications

A mathematical model simulating the host-parasite-environmental interactions of eastern oysters (Crassostrea virginica) and the pathogen, Haplosporidium nelsoni, which causes MSX disease, has been developed. The model has 2 components. One replicates the infection process within the oyster and the other simulates transmission. The infection-development component relies on basic physiological processes of both host and parasite, modified by the environment, to reproduce the observed annual prevalence cycle of H. nelsoni. Equations describing these rates were constructed using data from long-term field observations, and field and laboratory experiments. In the model, salinity and temperature have direct effects upon …