Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Sorption-Desorption Of Imidacloprid And Its Metabolites In Soil And Vadose Zone Materials, Sharon V. Papiernik, William C. Koskinen, Lucia Cox, Pamela J. Rice, Sharon A. Clay, Nancy R. Werdin-Pfisterer, Kristen A. Norberg Jan 2006

Sorption-Desorption Of Imidacloprid And Its Metabolites In Soil And Vadose Zone Materials, Sharon V. Papiernik, William C. Koskinen, Lucia Cox, Pamela J. Rice, Sharon A. Clay, Nancy R. Werdin-Pfisterer, Kristen A. Norberg

Agronomy, Horticulture and Plant Science Faculty Publications

Sorption-desorption is one of the most important processes affecting the leaching of pesticides through soil because it controls the amount of pesticide available for transport. Subsurface soil properties can significantly affect pesticide transport and the potential for groundwater contamination. This research characterized the sorption-desorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-Nnitro-2-imidazolidinimine) and three of its metabolites, 1-[(6-chloro-3-pyridinyl)methyl]-2-imidazolidinone (imidacloprid-urea), 1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine (imidaclopridguanidine), and 1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine (imidacloprid-guanidine-olefin), as a function of changing soil properties with depth in two profiles extending from the surface to a depth of 1.8 or 8 m. Sorption of each compound was highly variable and hysteretic in all cases. Normalizing the sorption coefficients (Kf) …


Theoretical Derivation Of Stable And Nonisotopic Approaches For Assessing Soil Organic Carbon Turnover, D. E. Clay, C. G. Carlson, S. A. Clay, C. Reese, Z. Liu, J. Chang, M. M. Ellsbury Jan 2006

Theoretical Derivation Of Stable And Nonisotopic Approaches For Assessing Soil Organic Carbon Turnover, D. E. Clay, C. G. Carlson, S. A. Clay, C. Reese, Z. Liu, J. Chang, M. M. Ellsbury

Agronomy, Horticulture and Plant Science Faculty Publications

Techniques for measuring soil organic C (SOC) turnover in production fields are needed. The objectives of this study were to propose and test nonisotopic and 13 C stable isotopic techniques for assessing SOC turnover. Based on SOC equilibrium and mass balance relationships, an equation was derived: NHC/SOC initial=[1/(SOC× k NHC)](dSOC/dt)+ k SOC/k NHC, where dSOC/dt is the annual change in SOC, NHC is nonharvested C returned to soil, k SOC is the annual mineralization rate of SOC, and k NHC is the annual mineralization rate of NHC. This equation was used to calculate maintenance rates. An isotopic approach based on …