Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Engineering

Teck Nam Ang Dr.

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Comparative Study Of Various Pretreatment Reagents On Rice Husk And Structural Changes Assessment Of The Optimised Pretreated Rice Husk, Teck Nam Ang Dr., Gek Cheng Ngoh Dr, Adeline Seak May Chua Dr Jan 2013

Comparative Study Of Various Pretreatment Reagents On Rice Husk And Structural Changes Assessment Of The Optimised Pretreated Rice Husk, Teck Nam Ang Dr., Gek Cheng Ngoh Dr, Adeline Seak May Chua Dr

Teck Nam Ang Dr.

The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimisation using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimised with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimised condition (0.5% (w/v) HCl loading, 125oC, 1.5 hours) is relatively mild, and resulted in ~22.3 mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization …


Elucidation Of The Effect Of Ionic Liquid Pretreatment On Rice Husk Via Structural Analyses, Teck Nam Ang Dr., Gek Cheng Ngoh Dr, Adeline Seak May Chua Dr, Min Gyu Lee Prof Jan 2012

Elucidation Of The Effect Of Ionic Liquid Pretreatment On Rice Husk Via Structural Analyses, Teck Nam Ang Dr., Gek Cheng Ngoh Dr, Adeline Seak May Chua Dr, Min Gyu Lee Prof

Teck Nam Ang Dr.

Background: In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. Results: From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component …