Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Life Sciences

Are Fireworms Venomous? Evidence For The Convergent Evolution Of Toxin Homologs In Three Species Of Fireworms (Annelida, Amphinomidae), Aida Verdes, Danny Simpson, Mandë Holford Dec 2017

Are Fireworms Venomous? Evidence For The Convergent Evolution Of Toxin Homologs In Three Species Of Fireworms (Annelida, Amphinomidae), Aida Verdes, Danny Simpson, Mandë Holford

Publications and Research

Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms— Eurythoe complanata, Hermodice carunculata, andParamphinome jeffreysii—following a venomics approach to identify putative …


Transcription Activator Like Effector Nucleases (Talens): A New, Important, And Versatile Gene Editing Technique With A Growing Literature, Philip Barnett Dec 2017

Transcription Activator Like Effector Nucleases (Talens): A New, Important, And Versatile Gene Editing Technique With A Growing Literature, Philip Barnett

Publications and Research

Transcription activator like effector nucleases (TALENs) is a new and powerful technique in genetic engineering that can delete deleterious genes or add beneficial genes to organisms. It is being widely studied to improve crops and livestock, and is also being investigated clinically. Comparing the details of how both TALENs and its competitor, CRISPR-Cas9, function, reveals the potential advantages of TALENs. The growing literature, besides covering the scientific and technical aspects of TALENs, also includes pertinent information on regulatory aspects and the public’s perception and acceptance of TALENs.


Insights Into The Molecular Roles Of Zika Virus In Human Reproductive Complications And Congenital Neuropathologies, Rajendra Ghardbaran, Latchman Somenarain Dec 2017

Insights Into The Molecular Roles Of Zika Virus In Human Reproductive Complications And Congenital Neuropathologies, Rajendra Ghardbaran, Latchman Somenarain

Publications and Research

The recent upsurge in the association of congenital neurological disorders and infection by the Zika virus (ZIKV) has resulted in increased research focus on the biology of this flavivirus. Studies in animal models indicate that ZIKV can breach the placental barrier and selectively infect and deplete neuroprogenitor cells (NPCs) of the developing fetus, resulting in changes of brain structures, reminiscent of human microcephaly. In vitro and ex vivo studies using human cells and tissues showed that human NPCs and placental cells are targeted by ZIKV. Also of concern is the impact of ZIKV on human reproductive structures, with the potential …


Synthesis, Crystal Structure, And Photoluminescent Properties Of 3,3′,4,4′-Tetraethyl-5,5′-Divinyl-2,2′-Bipyrrole Derivatives, Toru Okawara, Reo Kawano, Hiroya Morita, Alan Finkelstein, Renjiro Toyofuku, Kanako Matsumoto, Kenji Takehara, Toshihiko Nagamura, Seiji Iwasa, Sanjai Kumar Oct 2017

Synthesis, Crystal Structure, And Photoluminescent Properties Of 3,3′,4,4′-Tetraethyl-5,5′-Divinyl-2,2′-Bipyrrole Derivatives, Toru Okawara, Reo Kawano, Hiroya Morita, Alan Finkelstein, Renjiro Toyofuku, Kanako Matsumoto, Kenji Takehara, Toshihiko Nagamura, Seiji Iwasa, Sanjai Kumar

Publications and Research

Photoluminescent divinylbipyrroles were synthesized from 3,3′,4,4′-tetraetyl-2,2′-bipyrrole-5,5′-dicarboxaldehyde and activated methylene compounds via aldol condensation.For mechanistic clarity, molecular structures of Meldrum’s acid- and 1,3-dimethylbarbituricacid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescentproperties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent onthe presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derivedfrom malononitrile, Meldrum’s acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on thebipyrrole 3 and 3′positions increased energy level of the highest occupied molecular orbital (HOMO)compared to the unsubstituted derivatives and provided rationale for the …


Ligand Modulation Of Sidechain Dynamics In A Wild-Type Human Gpcr, Lindsay D. Clark, Igor Dikiy, Karen Chapman, Karin Ej Rodstrom, James Aramini, Michael V. Levine, George Khelashvili, Soren Gf Rasmussen, Kevin H. Gardner, Daniel M. Rosenbaum Oct 2017

Ligand Modulation Of Sidechain Dynamics In A Wild-Type Human Gpcr, Lindsay D. Clark, Igor Dikiy, Karen Chapman, Karin Ej Rodstrom, James Aramini, Michael V. Levine, George Khelashvili, Soren Gf Rasmussen, Kevin H. Gardner, Daniel M. Rosenbaum

Publications and Research

GPCRs regulate all aspects of human physiology, and biophysical studies have deepened our understanding of GPCR conformational regulation by different ligands. Yet there is no experimental evidence for how sidechain dynamics control allosteric transitions between GPCR conformations. To address this deficit, we generated samples of a wild-type GPCR (A2AR) that are deuterated apart from 1H/13C NMR probes at isoleucine d1 methyl groups, which facilitated 1H/13C methyl TROSY NMR measurements with opposing ligands. Our data indicate that low [Na+] is required to allow large agonist-induced structural changes in A2AR, and that patterns of sidechain dynamics substantially differ between agonist (NECA) and …


Pharmacological Antagonism And The Olfactory Code, Mihwa Na Sep 2017

Pharmacological Antagonism And The Olfactory Code, Mihwa Na

Dissertations, Theses, and Capstone Projects

Mammals can detect and discriminate uncountable odors through their odorant receptors. To accommodate the countless and diverse odors, exceptionally large numbers of odorant receptor (OR) genes are expressed in mammals. In addition, the mammals utilize a combinatorial code, where an odorant molecule can activate multiple ORs; an OR also responds to a set of multiple odorants. In nature, an odor is often a complex mixture of multiple odorant molecules. The combination of the ORs activated by each constituent generates the unique olfactory code for the particular odor.

Some odorants can antagonize select ORs, as discussed in Chapter 1. An antagonist …


Structural And Biochemical Studies Of The Dna Replication Initiation Mechanism Of The Second Chromosome Of Vibrio Cholerae, Natalia Orlova Sep 2017

Structural And Biochemical Studies Of The Dna Replication Initiation Mechanism Of The Second Chromosome Of Vibrio Cholerae, Natalia Orlova

Dissertations, Theses, and Capstone Projects

Transmission of genetic information through DNA replication is one of the key processes for any living organism. Despite the extensive effort put into studies of the mechanism of DNA replication, the understanding of the process on the molecular level is still incomplete. Specifically the molecular details of the very first events of DNA replication initiation are not sufficiently understood.

The majority of bacteria possess a single circular chromosome, and in order to initiate DNA replication these organisms utilize a conserved system, consisting of a specific DNA sequence - replication origin, called oriC, and replication initiator protein DnaA. However, bacteria …


Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis Sep 2017

Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis

Dissertations, Theses, and Capstone Projects

Inflammation plays a major role in Alzheimer’s disease (AD). Investigating how specific mediators of inflammation contribute to neurodegeneration in AD is crucial. Our studies focused on cyclooxygenases, which are key enzymes in inflammation and highly relevant to AD. Cyclooxygenases (COX -1, constitutive; COX-2, inducible) have emerged as important determinants of AD pathogenesis and progression. COX-2 is highly induced in AD, correlating with AD severity, and COX-1 is also involved in AD. Cyclooxygenases are the rate-limiting enzymes that convert arachidonic acid into prostaglandins (PGs), the principal mediators of CNS neuroinflammation.

The overall GOAL of these studies was to address the mechanisms …


A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati Sep 2017

A Combined Computational Strategy Of Sequence And Structural Analysis Predicts The Existence Of A Functional Eicosanoid Pathway In Drosophila Melanogaster, Michael Scarpati

Dissertations, Theses, and Capstone Projects

With increased understanding of their roles in signal transduction and metabolism, eicosanoids have emerged as important players in human health and disease. Mammalian prostanoids and related lipid mediators perform varied functions in different tissues and organs. Synthesized through the oxygenation of C20 polyunsaturated fatty acids, mammalian eicosanoids are both pro- and anti-inflammatory. The physiological contexts in which eicosanoid family members act at the cellular level are not well understood. In this study, we examined whether the genome of Drosophila melanogaster, a powerful model for innate immunity and inflammation, codes for the enzymes required for eicosanoid biosynthesis. We report the …


Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin Sep 2017

Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin

Dissertations, Theses, and Capstone Projects

β-hairpin antimicrobial peptides (AMPs) are small, usually cationic peptides that provide innate biological defenses against multiple agents. They have been proposed as the basis for novel antibiotics, but their pore formation has not been directly observed on a molecular level. We review previous computational studies of peptide-induced membrane pore formation and report several new molecular dynamics simulations of β-hairpin AMPs to elucidate their pore formation mechanism. We simulated β-barrels of various AMPs in anionic implicit membranes, finding that most of the AMPs’ β-barrels were not as stable as those of protegrin. We also performed an optimization study of protegrin β-barrels …


Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang Sep 2017

Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang

Dissertations, Theses, and Capstone Projects

The Adipocyte Fatty Acid-Binding Protein (AFABP) is mainly expressed in fat cells. It can bind fatty acids and other lipophilic substances such as eicosanoids and retinoids. The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor protein that requires ligand binding to regulate the specific gene transcription. PPARγ is expressed at extremely high levels in adipose tissue, macrophages, and the large intestine, where it controls lipid adipogenesis and energy conversion. Moreover, it has been found that AFABP and PPARγ can form a complex in vivo. It is proposed that AFABP carries the ligand and enters into the nucleus where it …


Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes Sep 2017

Mutagenesis Of Human Alpha-Galactosidase A For The Treatment Of Fabry Disease, Erin Stokes

Dissertations, Theses, and Capstone Projects

Fabry disease is an X-linked lysosomal storage disorder caused by the deficiency of the enzyme, α-galactosidase A, which results in the accumulation of the lipid substrate. This accumulation results in obstruction of blood flow in patients and early demise at approximately 40-60 years of age. There is currently only one FDA approved treatment (Fabrazyme) classified as an enzyme replacement therapy. However, approximately 88% of patients experience a severe immune response that, rarely, can be fatal and is a huge cost burden at average $250,000 a year per patient. The structure of α-galactosidase A has been previously determined to be a …


Potential Modifications To Enzyme Replacement Therapy In Anderson-Fabry Disease, Mariam Meghdari Sep 2017

Potential Modifications To Enzyme Replacement Therapy In Anderson-Fabry Disease, Mariam Meghdari

Dissertations, Theses, and Capstone Projects

Mutations in the GLA gene that encodes the lysosomal enzyme α-galactosidase A (αGal) result in the sphingolipidoses named Fabry disease. This enzymatic defect is inherited as an X-linked recessive disorder and is associated with a progressive deposition of glycosphingolipids, including globotriaosylceramide (GB3), galabioasylceramide, and blood group B substance in the cell. In affected males, and in some females, this leads to early death due to occlusive disease of the heart, kidney, and brain. This disease is currently treated by infusions of αGal, prolonging patients’ lives but producing antibodies against the enzyme reducing the treatment efficacy. Treatment also causes numerous and …


Engineered Aptamers To Probe Molecular Interactions On The Cell Surface, Sana Batool, Sanam Bhandari, Shanell George, Precious Okeoma, Nabeela Van, Hazan E. Zümrüt, Prabodhika Mallikaratchy Aug 2017

Engineered Aptamers To Probe Molecular Interactions On The Cell Surface, Sana Batool, Sanam Bhandari, Shanell George, Precious Okeoma, Nabeela Van, Hazan E. Zümrüt, Prabodhika Mallikaratchy

Publications and Research

Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in …


The Heat Shock Response And Humoral Immune Response Are Mutually Antagonistic In Honey Bees, Mia Mckinstry, Charlie Chung, Henry Truong, Brittany A. Johnston, Jonathan W. Snow Aug 2017

The Heat Shock Response And Humoral Immune Response Are Mutually Antagonistic In Honey Bees, Mia Mckinstry, Charlie Chung, Henry Truong, Brittany A. Johnston, Jonathan W. Snow

Publications and Research

The honey bee is of paramount importance to humans in both agricultural and ecological settings. Honey bee colonies have suffered from increased attrition in recent years, stemming from complex interacting stresses. Defining common cellular stress responses elicited by these stressors represents a key step in understanding potential synergies. The proteostasis network is a highly conserved network of cellular stress responses involved in maintaining the homeostasis of protein production and function. Here, we have characterized the Heat Shock Response (HSR), one branch of this network, and found that its core components are conserved. In addition, exposing bees to elevated temperatures normally …


Thermodynamic And Kinetic Analyses Of Iron Response Element (Ire)-Mrna Binding To Iron Regulatory Protein, Irp1, Mateen A. Khan, William E. Walden, Elizabeth C. Theil, Dixie J. Goss Aug 2017

Thermodynamic And Kinetic Analyses Of Iron Response Element (Ire)-Mrna Binding To Iron Regulatory Protein, Irp1, Mateen A. Khan, William E. Walden, Elizabeth C. Theil, Dixie J. Goss

Publications and Research

Comparison of kinetic and thermodynamic properties of IRP1 (iron regulatory protein1) binding to FRT (ferritin) and ACO2 (aconitase2) IRE-RNAs, with or without Mn2+, revealed differences specific to each IRE-RNA. Conserved among animal mRNAs, IRE-RNA structures are noncoding and bind Fe2+ to regulate biosynthesis rates of the encoded, iron homeostatic proteins. IRP1 protein binds IRERNA, inhibiting mRNA activity; Fe2+ decreases IRE-mRNA/IRP1 binding, increasing encoded protein synthesis. Here, we observed heat, 5 °C to 30 °C, increased IRP1 binding to IRE-RNA 4-fold (FRT IRE-RNA) or 3-fold (ACO2 IRE-RNA), which was enthalpy driven and entropy favorable. Mn2+ (50 μM, 25 °C) increased IRE-RNA/IRP1 …


Bow-Tie Signaling In C-Di-Gmp: Machine Learning In A Simple Biochemical Network, Jinyuan Yan, Maxime Deforet, Kerry E. Boyle, Rayees Rahman, Raymond Liang, Chinweike Okegbe, Lars E. P. Dietrich, Weigang Qiu, Joao B. Xavier Aug 2017

Bow-Tie Signaling In C-Di-Gmp: Machine Learning In A Simple Biochemical Network, Jinyuan Yan, Maxime Deforet, Kerry E. Boyle, Rayees Rahman, Raymond Liang, Chinweike Okegbe, Lars E. P. Dietrich, Weigang Qiu, Joao B. Xavier

Publications and Research

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3'-5')-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside worldÐthe input stimuliÐinto intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motilityÐthe output phenotypes. How does the `uninformed' process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired …


Range Of Detection For Proteins And Dna From Fingerprints On Fired And Unfired Cartridge Casings, Stacey-Ann R. Sterling Aug 2017

Range Of Detection For Proteins And Dna From Fingerprints On Fired And Unfired Cartridge Casings, Stacey-Ann R. Sterling

Student Theses

Cartridges and spent cartridge casings can be probative pieces of evidence. Unfortunately due to a combination of factors such as exposure to high temperatures and initially low amounts of biological material on the surface, DNA testing so far has been mostly unsuccessful for these items. Typing other marker systems, such as protein polymorphisms, on the same biological evidence would add power of discrimination. To explore this option we developed a DNA-protein trypsin-based co-extraction method that was optimized for unfired and fired cartridges. Various sample wet and dry collection methods and multiple metal casings, such as aluminum, nickel, steel, and brass …


Conserved Amino Acid Networks Modulate Discrete Functional Properties In An Enzyme Superfamily, Chitra Narayanan, Donald Gagne, Kimberly A. Reynolds, Nicolas Doucet Jun 2017

Conserved Amino Acid Networks Modulate Discrete Functional Properties In An Enzyme Superfamily, Chitra Narayanan, Donald Gagne, Kimberly A. Reynolds, Nicolas Doucet

Advanced Science Research Center

In this work, we applied the sequence-based statistical coupling analysis approach to characterize conserved amino acid networks important for biochemical function in the pancreatic-type ribonuclease (ptRNase) superfamily. This superfamily-wide analysis indicates a decomposition of the RNase tertiary structure into spatially distributed yet physically connected networks of co-evolving amino acids, termed sectors. Comparison of this statistics-based description with new NMR experiments data shows that discrete amino acid networks, termed sectors, control the tuning of distinct functional properties in different enzyme homologs. Further, experimental characterization of evolutionarily distant sequences reveals that sequence variation at sector positions can distinguish homologs with a conserved …


Estrogen-Activated Mdm2 Disrupts Mammary Tissue Architecture Through A P53-Independent Pathway, Nandini Kundu, Angelika Brekman, Jun Yeob Kim, Gu Xiano, Chong Gao, Jill Bargonetti May 2017

Estrogen-Activated Mdm2 Disrupts Mammary Tissue Architecture Through A P53-Independent Pathway, Nandini Kundu, Angelika Brekman, Jun Yeob Kim, Gu Xiano, Chong Gao, Jill Bargonetti

Publications and Research

The Cancer Genome Atlas (TCGA) data indicate that high MDM2 expression correlates with all subtypes of breast cancer. Overexpression of MDM2 drives breast oncogenesis in the presence of wild-type or mutant p53 (mtp53). Importantly, estrogen-receptor positive (ER+) breast cancers overexpress MDM2 and estrogen mediates this expression. We previously demonstrated that this estrogen-MDM2 axis activates the proliferation of breast cancer cell lines T47D (mtp53 L194F) and MCF7 (wild-type p53) in a manner independent of increased degradation of wildtype p53 (ie, p53-independently). Herein we present data supporting the role of the estrogen-MDM2 axis in regulating cell proliferation and mammary tissue architecture of …


Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi May 2017

Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi

Publications and Research

Background: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant …


Protocols And Pitfalls In Obtaining Fatty Acid-Binding Proteins For Biophysical Studies Of Ligand-Protein And Protein-Protein Interactions, Qian Wang, Samar Rizk, Cédric Bernard, May Poh Lai, David Kam, Judith Storch, Ruth E. Stark May 2017

Protocols And Pitfalls In Obtaining Fatty Acid-Binding Proteins For Biophysical Studies Of Ligand-Protein And Protein-Protein Interactions, Qian Wang, Samar Rizk, Cédric Bernard, May Poh Lai, David Kam, Judith Storch, Ruth E. Stark

Publications and Research

Adipocyte fatty acid-binding protein (AFABP: FABP4) is a member of the intracellular lipid-binding protein family that is thought to target long-chain fatty acids to nuclear receptors such as peroxisome proliferatoractivated receptor gamma (PPARγ), which in turn plays roles in insulin resistance and obesity. A molecular understanding of AFABP function requires robust isolation of the protein in liganded and free forms as well as characterization of its oligomerization state(s) under physiological conditions. We report development of a protocol to optimize the production of members of this protein family in pure form, including removal of their bound lipids by mixing with hydrophobically …


Ultraviolet Radiation Reduces Desmosine Cross-Links In Elastin, Basant Dhital, Philip Durlik, Pratikkumar Rathod, Farhana Gul-E-Noor, Zhixiao Wang, Cheng Sun, Emmanuel J. Chang, Boris Itin, Gregory S. Boutis Apr 2017

Ultraviolet Radiation Reduces Desmosine Cross-Links In Elastin, Basant Dhital, Philip Durlik, Pratikkumar Rathod, Farhana Gul-E-Noor, Zhixiao Wang, Cheng Sun, Emmanuel J. Chang, Boris Itin, Gregory S. Boutis

Publications and Research

Elastic fibers, a major component of the extracellular matrix of the skin, are often exposed to ultraviolet (UV) radiation throughout mammalian life. We report on an in vitro study of the alterations in bovine nuchal ligament elastic fibers resulting from continuous UV-A exposure by the use of transmission electron microscopy (TEM), histology, mass spectrometry, and solid state 13C NMR methodologies. TEM images reveal distinct cracks in elastic fibers as a result of UV-A irradiation and histological measurements show a disruption in the regular array of elastic fibers present in unirradiated samples; elastic fibers appear shorter, highly fragmented, and thinner after …


Characterization Of Lipid Rafts In Human Platelets Using Nuclear Magnetic Resonance: A Pilot Study, Joshua F. Ceñido, Boris Itin, Ruth E. Stark, Yung-Yu Huang, Maria A. Oquendo, J. John Mann, M. Elizabeth Sublette Mar 2017

Characterization Of Lipid Rafts In Human Platelets Using Nuclear Magnetic Resonance: A Pilot Study, Joshua F. Ceñido, Boris Itin, Ruth E. Stark, Yung-Yu Huang, Maria A. Oquendo, J. John Mann, M. Elizabeth Sublette

Publications and Research

Lipid microdomains (‘lipid rafts’) are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied …


Isokinetic Dynamometry And 1rm Tests Produce Conflicting Results For Assessing Alterations In Muscle Strength, Paulo Gentil, Fabricio Boscolo Del Vecchio, Antonio Paoli, Brad J. Schoenfeld, Martim Bottaro Mar 2017

Isokinetic Dynamometry And 1rm Tests Produce Conflicting Results For Assessing Alterations In Muscle Strength, Paulo Gentil, Fabricio Boscolo Del Vecchio, Antonio Paoli, Brad J. Schoenfeld, Martim Bottaro

Publications and Research

The purpose of this study was to compare strength gains in the lower limbs, assessed by one maximum repetition (1RM) and isokinetic peak torque (PT), in young men undergoing a resistance training (RT) program. Twenty-seven young men performed resistance training twice a week for 11 weeks. Training involved two exercises for the lower body, two for the upper body and one for the midsection performed with three sets of 8-12 repetitions to momentary muscle failure. Before and after the training period, participants performed the 1RM test in the 45° leg press and knee extension PT in isokinetic dynamometry. The Pearson …


A Novel Microrna-1207-3p/Fndc1/Fn1/Ar Regulatory Pathway In Prostate Cancer, Dibash K. Das, Olorunseun O. Ogunwobi Feb 2017

A Novel Microrna-1207-3p/Fndc1/Fn1/Ar Regulatory Pathway In Prostate Cancer, Dibash K. Das, Olorunseun O. Ogunwobi

Publications and Research

Prostate cancer (PCa) is the second most common cause of cancer-specific deaths in the U.S. Unfortunately, the underlying molecular mechanisms for its development and progression remain unclear. Studies have established that microRNAs (miRNAs) are dysregulated in PCa. The intron-derived microRNA-1207-3p (miR-1207-3p) is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, miR-1207-3p in PCa had not previously been investigated. Therefore, we explored if miR-1207-3p plays any regulatory role in PCa. We discovered that miR-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells, and …


Fibronectin And Androgen Receptor Expression Data In Prostate Cancer Obtained From A Rna-Sequencing Bioinformatics Analysis, Dibash K. Das, Thahmina Ali, Konstantinos Krampis, Olorunseun O. Ogunwobi Feb 2017

Fibronectin And Androgen Receptor Expression Data In Prostate Cancer Obtained From A Rna-Sequencing Bioinformatics Analysis, Dibash K. Das, Thahmina Ali, Konstantinos Krampis, Olorunseun O. Ogunwobi

Publications and Research

Prostate cancer is the second most commonly diagnosed male cancer in the world. The molecular mechanisms underlying its development and progression are still unclear. Here we show analysis of a prostate cancer RNA-sequencing dataset that was originally generated by Ren et al. [3] from the prostate tumor and adjacent normal tissues of 14 patients. The data presented here was analyzed using our RNA-sequencing bioinformatics analysis pipeline implemented on the bioinformatics web platform, Galaxy. The relative expression of fibronectin (FN1) and the androgen receptor (AR) were calculated in fragments per kilobase of transcript per million mapped reads, and represented in FPKM …


Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon Feb 2017

Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon

Dissertations, Theses, and Capstone Projects

Mammalian target of Rapamycin (mTOR) is a protein kinase that integrates nutrient and growth factor signals to promote cellular growth and proliferation. mTOR exists in two complexes - mTORC1 and mTORC2 that are distinguished by their binding partners and signaling inputs. mTORC1 is responsive to growth factors, amino acids and glucose and is associated with Raptor; whereas, mTORC2 is responsive primarily to growth factors and is associated with Rictor. Raptor and Rictor confer substrate specificity to mTORC1 and mTORC2 respectively. Phosphatidic acid (PA), a lipid second messenger and a central metabolite for membrane phospholipid biosynthesis, is required for the stability …


Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal Feb 2017

Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal

Dissertations, Theses, and Capstone Projects

The CLC family of membrane proteins is a ubiquitously expressed class of proton and usually voltage-activated chloride transporters involved in a myriad of physiological functions. Crystallographic structures identify up to three chloride binding sites: external, central and intracellular located in the inner half of the trans-membrane domain. The CLC proteins, except for the kidney isoforms, are gated by the extracellular side-facing gating Glutamate (Ex, E148 in CLC-ec1, the E. coli exchanger), which is thought to undergo a conformational change upon protonation.

To sort out how the thermodynamic paths to H+ coupled Cl¯ binding and conformational change in CLC-ec1 at the …


Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We …