Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Atmospheric chemistry

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Influence Of Nutrient Availability, Stand Age, And Canopy Structure On Isoprene Flux In A Eucalyptus Saligna Experimental Forest, Jennifer L. Funk, Christian P. Giardina, Alexander Knohl, Manuel T. Lerdau Jan 2006

Influence Of Nutrient Availability, Stand Age, And Canopy Structure On Isoprene Flux In A Eucalyptus Saligna Experimental Forest, Jennifer L. Funk, Christian P. Giardina, Alexander Knohl, Manuel T. Lerdau

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Eucalyptus plantations occupy approximately 10 million ha of land in the tropics and, increasingly, afforestation and reforestation projects are relying on this genus to provide rapid occupation of degraded sites, large quantities of high-quality wood products, and high rates of carbon sequestration. Members of the genus Eucalyptus are also very high emitters of isoprene, the dominant volatile organic compound emitted by trees in tropical ecosystems, which significantly influences the oxidative capacity of the atmosphere. While fertilization growth response of these trees has been intensively studied, little is known about how fertilization and tree age alter isoprene production from plantations of …


Diurnal Variation In The Basal Emission Rate Of Isoprene, Jennifer L. Funk, Clive G. Jones, Christine J. Baker, Heather M. Fuller, Christian P. Giardina, Manuel T. Lerdau Jan 2003

Diurnal Variation In The Basal Emission Rate Of Isoprene, Jennifer L. Funk, Clive G. Jones, Christine J. Baker, Heather M. Fuller, Christian P. Giardina, Manuel T. Lerdau

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Isoprene is emitted from numerous plant species and profoundly influences tropospheric chemistry. Due to the short lifetime of isoprene in the atmosphere, developing an understanding of emission patterns at small time scales is essential for modeling regional atmospheric chemistry processes. Previous studies suggest that diurnal fluctuations in isoprene emission may be substantial, leading to inaccuracies in emission estimates at larger scales. We examined diurnal patterns in the basal emission rate of isoprene in red oak (Quercus rubra), eastern cottonwood (Populus deltoides), and eucalyptus (Eucalyptus saligna) and the influence of light and temperature on the magnitude of these diurnal patterns. Maximum …