Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

University of Tennessee, Knoxville

Ethylene

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Non-Canonical Signaling From The Etr1 And Etr2 Ethylene Receptors In Arabidopsis Thaliana, Arkadipta Bakshi Dec 2017

Non-Canonical Signaling From The Etr1 And Etr2 Ethylene Receptors In Arabidopsis Thaliana, Arkadipta Bakshi

Doctoral Dissertations

The gaseous phytohormone ethylene regulates several physiological and developmental processes in higher plants. There are five ethylene receptor isoforms that mediate the responses to ethylene in the model plant Arabidopsis thaliana. Prior research has shown that these five ethylene receptor isoforms in Arabidopsis have both overlapping and non-overlapping roles in regulating diverse responses such as growth in air, growth recovery after removal of ethylene, and ethylene stimulated nutational bending. Functional divergence of ETR1 has been determined in controlling some of these traits and in some of these cases, ETR1 subfunctionalization requires the receiver domain. Using homology modeling and sequence …


Ethylene Receptors Function As Components Of High-Molecular-Mass Protein Complexes In Arabidopsis, Yi-Feng Chen, Zhiyong Gao, Robert J. Kerriss Iii, Wuyi Wang, Brad M. Binder, G. Eric Schaller Jan 2010

Ethylene Receptors Function As Components Of High-Molecular-Mass Protein Complexes In Arabidopsis, Yi-Feng Chen, Zhiyong Gao, Robert J. Kerriss Iii, Wuyi Wang, Brad M. Binder, G. Eric Schaller

Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology

The gaseous plant hormone ethylene is perceived in Arabidopsis thaliana by a five-member receptor family composed of ETR1, ERS1, ETR2, ERS2, and EIN4. Methodology/Principal Findings

Gel-filtration analysis of ethylene receptors solubilized from Arabidopsis membranes demonstrates that the receptors exist as components of high-molecular-mass protein complexes. The ERS1 protein complex exhibits an ethylene-induced change in size consistent with ligand-mediated nucleation of protein-protein interactions. Deletion analysis supports the participation of multiple domains from ETR1 in formation of the protein complex, and also demonstrates that targeting to and retention of ETR1 at the endoplasmic reticulum only requires the first 147 amino acids of …