Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Chromosome Number Evolution, Phylogeography, And The Effects Of Climate Change On Species Distributions In Polyploid Plant Systems, Courtney H. Babin Aug 2022

Chromosome Number Evolution, Phylogeography, And The Effects Of Climate Change On Species Distributions In Polyploid Plant Systems, Courtney H. Babin

University of New Orleans Theses and Dissertations

Polyploidy, a term used to describe organisms with cells having more than two paired sets of chromosomes, is a significant driver of diversification among land plants. Over a century of research has advanced our understanding of polyploidization in some taxa, but polyploid organisms remain understudied. In this dissertation, I investigate chromosome number evolution, phylogeographic structure, genetic differentiation, and the effects of climate change on ploidy level distribution using polyploid plant systems. In the first chapter, I inferred a molecular phylogeny of Allium, an economically important genus that includes cultivated crops and ornamentals, to investigate evolutionary transitions in chromosome number …


Warming Up: Climate Change Related Shifts Of Mycorrhizal Fungal Communities In High Latitude Ecosystems, Megan Rae Devan May 2019

Warming Up: Climate Change Related Shifts Of Mycorrhizal Fungal Communities In High Latitude Ecosystems, Megan Rae Devan

Biology ETDs

This dissertation examines how climate change affects mycorrhizal fungal communities in boreal and arctic ecosystems. In chapter one, I revealed that increases in fire severity and related increases in deciduous tree dominance result in greater Ascomycota relative abundance (RA) and subsequent declines in Basidiomycota RA. In chapter two I analyzed the effects of post-fire mycorrhizal fungal communites on host growth. There were trends at the fungal genus level that were largely reflected at the guild level across all hosts; however, there were some fungal genera that had the opposite effect on different host species. In chapter three, I found host …


Synergistic Effects Of Temperature And Salinity On The Gene Expression And Physiology Of Crassostrea Virginica, Hollis Jones Oct 2018

Synergistic Effects Of Temperature And Salinity On The Gene Expression And Physiology Of Crassostrea Virginica, Hollis Jones

LSU Master's Theses

Crassostrea virginica, the eastern oyster, forms reefs that provide critical services and benefits to the resiliency of the surrounding ecosystem. Changes in environmental conditions, including salinity and temperature, can dramatically alter the services oysters provide by affecting their population dynamics. Climate warming may further exacerbate the effects of salinity changes as precipitation events increase in frequency, intensity, and duration. Temperature and salinity independently and synergistically influence gene expression and physiology in marine organisms. We used comparative transcriptomics, physiology, and a field assessment experiment to investigate whether Louisianan oyster are changing their phenotypes to cope with increased temperature and salinity …