Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Laboratory and Basic Science Research

Dissertations & Theses (Open Access)

DNA damage

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Development Of The Ark Assay For Quantitating Dna- Protein Crosslink Accumulation And Fanconi Anemia Pathway Involvement In The Repair Process, Naeh Klages-Mundt May 2022

Development Of The Ark Assay For Quantitating Dna- Protein Crosslink Accumulation And Fanconi Anemia Pathway Involvement In The Repair Process, Naeh Klages-Mundt

Dissertations & Theses (Open Access)

DNA-protein crosslinks (DPCs) are a common DNA lesion naturally arising in cells, wherein protein becomes covalently and irreversibly bound to the DNA. Given their excessive size, these adducts present a significant challenge to replication and transcription, thus requiring timely and efficient repair. However, the precise mechanisms involved with processing DPC removal remain unclear. Moreover, current methodologies to quantitate DPC accumulation and removal are restrained by a range of limitations. Here, we describe and discuss a new DPC detection assay – the ARK assay – capable of overcoming the limitations incurred by prior assays. The design, which uses dual chaotropic lysis …


Investigation Of The Roles Of Asf1 And Caf-1-Mediated Chromatin Assembly In The Human Dna Damage Response, Ting-Hsiang Huang May 2017

Investigation Of The Roles Of Asf1 And Caf-1-Mediated Chromatin Assembly In The Human Dna Damage Response, Ting-Hsiang Huang

Dissertations & Theses (Open Access)

The access-repair-restore model for the role of chromatin in DNA repair infers that chromatin is a mere obstacle to DNA repair. However, here we show that blocking chromatin assembly of newly-synthesized histones, via knockdown of the histone chaperones ASF1A, CAF-1 or a mutation that specifically prevents ASF1 binding to histones, hinders loading of Rad51 onto ssDNA during homologous recombination, as a consequence of reduced recruitment of the Rad51 loader MMS22L/TONSL to ssDNA, resulting in persistent RPA foci, extensive DNA end-resection, and persistent activation of the ATR-Chk1 pathway. By contrast, ASF1 and CAF-1 render the rapid inactivation of ATM Chk2 pathway …