Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Machine Learning

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Life Sciences

Optimization And Application Of Graph Neural Networks, Shuo Zhang Sep 2023

Optimization And Application Of Graph Neural Networks, Shuo Zhang

Dissertations, Theses, and Capstone Projects

Graph Neural Networks (GNNs) are widely recognized for their potential in learning from graph-structured data and solving complex problems. However, optimal performance and applicability of GNNs have been an open-ended challenge. This dissertation presents a series of substantial advances addressing this problem. First, we investigate attention-based GNNs, revealing a critical shortcoming: their ignorance of cardinality information that impacts their discriminative power. To rectify this, we propose Cardinality Preserved Attention (CPA) models that can be applied to any attention-based GNNs, which exhibit a marked improvement in performance. Next, we introduce the Directional Node Pair (DNP) descriptor and the Robust Molecular Graph …


Machine Learning And Network Embedding Methods For Gene Co-Expression Networks, Niloofar Aghaieabiane May 2023

Machine Learning And Network Embedding Methods For Gene Co-Expression Networks, Niloofar Aghaieabiane

Dissertations

High-throughput technologies such as DNA microarrays and RNA-seq are used to measure the expression levels of large numbers of genes simultaneously. To support the extraction of biological knowledge, individual gene expression levels are transformed into Gene Co-expression Networks (GCNs). GCNs are analyzed to discover gene modules. GCN construction and analysis is a well-studied topic, for nearly two decades. While new types of sequencing and the corresponding data are now available, the software package WGCNA and its most recent variants are still widely used, contributing to biological discovery.

The discovery of biologically significant modules of genes from raw expression data is …


Leveraging A Machine Learning Based Predictive Framework To Study Brain-Phenotype Relationships, Sage Hahn Jan 2023

Leveraging A Machine Learning Based Predictive Framework To Study Brain-Phenotype Relationships, Sage Hahn

Graduate College Dissertations and Theses

An immense collective effort has been put towards the development of methods forquantifying brain activity and structure. In parallel, a similar effort has focused on collecting experimental data, resulting in ever-growing data banks of complex human in vivo neuroimaging data. Machine learning, a broad set of powerful and effective tools for identifying multivariate relationships in high-dimensional problem spaces, has proven to be a promising approach toward better understanding the relationships between the brain and different phenotypes of interest. However, applied machine learning within a predictive framework for the study of neuroimaging data introduces several domain-specific problems and considerations, leaving the …


Biomarker Identification For Breast Cancer Types Using Feature Selection And Explainable Ai Methods, David E. La Rosa Giraud Jan 2023

Biomarker Identification For Breast Cancer Types Using Feature Selection And Explainable Ai Methods, David E. La Rosa Giraud

Honors Undergraduate Theses

This paper investigates the impact the LASSO, mRMR, SHAP, and Reinforcement Feature Selection techniques on random forest models for the breast cancer subtypes markers ER, HER2, PR, and TN as well as identifying a small subset of biomarkers that could potentially cause the disease and explain them using explainable AI techniques. This is important because in areas such as healthcare understanding why the model makes a specific decision is important it is a diagnostic of an individual which requires reliable AI. Another contribution is using feature selection methods to identify a small subset of biomarkers capable of predicting if a …


The Role Of Machine Learning And Network Analyses In Understanding Microbial Composition In An Experimental Prairie, Ali Eastman Oku Jan 2023

The Role Of Machine Learning And Network Analyses In Understanding Microbial Composition In An Experimental Prairie, Ali Eastman Oku

Graduate Research Theses & Dissertations

Machine learning and network analyses are powerful modern tools can process and map out connections between large amount of ecological data from complex environmental communities. Random forests, an ensemble machine learning algorithm, are particularly powerful as they can capture complex patterns in data while remaining easily interpretable. These tools are specifically useful in experimental settings where different types of data are collected. The aim of this study was to demonstrate the utility of machine learning models and network analyses at analyzing diverse ecological data from dynamic plant-soil microbial communities in a prairie ecosystem. Our experimental system is an experimental prairie …


Towards A Novel Approach For Smart Agriculture Predictability, Rima Grati, Myriam Aloulou, Khouloud Boukadi Jan 2023

Towards A Novel Approach For Smart Agriculture Predictability, Rima Grati, Myriam Aloulou, Khouloud Boukadi

All Works

No abstract provided.


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu Aug 2022

Development Of The Assessment Of Clinical Prediction Model Transportability (Apt) Checklist, Sean Chonghwan Yu

McKelvey School of Engineering Theses & Dissertations

Clinical Prediction Models (CPM) have long been used for Clinical Decision Support (CDS) initially based on simple clinical scoring systems, and increasingly based on complex machine learning models relying on large-scale Electronic Health Record (EHR) data. External implementation – or the application of CPMs on sites where it was not originally developed – is valuable as it reduces the need for redundant de novo CPM development, enables CPM usage by low resource organizations, facilitates external validation studies, and encourages collaborative development of CPMs. Further, adoption of externally developed CPMs has been facilitated by ongoing interoperability efforts in standards, policy, and …


Development Of Graphical Models And Statistical Physics Motivated Approaches To Genomic Investigations, Yashwanth Lagisetty Aug 2022

Development Of Graphical Models And Statistical Physics Motivated Approaches To Genomic Investigations, Yashwanth Lagisetty

Dissertations & Theses (Open Access)

Identifying genes involved in disease pathology has been a goal of genomic research since the early days of the field. However, as technology improves and the body of research grows, we are faced with more questions than answers. Among these is the pressing matter of our incomplete understanding of the genetic underpinnings of complex diseases. Many hypotheses offer explanations as to why direct and independent analyses of variants, as done in genome-wide association studies (GWAS), may not fully elucidate disease genetics. These range from pointing out flaws in statistical testing to invoking the complex dynamics of epigenetic processes. In the …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Hyperspectral Image Analysis Of Food For Nutritional Intake, Shirin Nasr Esfahani Aug 2022

Hyperspectral Image Analysis Of Food For Nutritional Intake, Shirin Nasr Esfahani

UNLV Theses, Dissertations, Professional Papers, and Capstones

The primary object of this dissertation is to investigate the application of hyperspectral technology to accommodate for the growing demand in the automatic dietary assessment applications. Food intake is one of the main factors that contribute to human health. In other words, it is necessary to get information about the amount of nutrition and vitamins that a human body requires through a daily diet. Manual dietary assessments are time-consuming and are also not precise enough, especially when the information is used for the care and treatment of hospitalized patients. Moreover, the data must be analyzed by nutritional experts. Therefore, researchers …


Machine Learning Analysis Of Single Nucleotide Polymorphism (Snp) Data To Predict Bone Mineral Density In African American Women, Erick Githua Wakayu Dec 2021

Machine Learning Analysis Of Single Nucleotide Polymorphism (Snp) Data To Predict Bone Mineral Density In African American Women, Erick Githua Wakayu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Osteoporosis is a debilitating disease in which an individual’s bones weaken, making bones fragile and more susceptible to fracture. While commonly found amongst postmenopausal Caucasian and Asian women based on previous studies, those of African descent (African American/Black) have largely been ignored when it comes to osteoporotic studies, especially when it comes to Genome Wide Association Studies (GWAS). From GWA studies, we gain access to single nucleotide poly-morphisms (SNPs) that may contribute to certain illnesses, such as osteoporosis. With low Bone Mineral Density (BMD) being one of the primary markers of potential osteoporosis, it is prudent that proper research is …


Machine Learning Models For Deciphering Regulatory Mechanisms And Morphological Variations In Cancer, Saman Farahmand May 2021

Machine Learning Models For Deciphering Regulatory Mechanisms And Morphological Variations In Cancer, Saman Farahmand

Graduate Doctoral Dissertations

The exponential growth of multi-omics biological datasets is resulting in an emerging paradigm shift in fundamental biological research. In recent years, imaging and transcriptomics datasets are increasingly incorporated into biological studies, pushing biology further into the domain of data-intensive-sciences. New approaches and tools from statistics, computer science, and data engineering are profoundly influencing biological research. Harnessing this ever-growing deluge of multi-omics biological data requires the development of novel and creative computational approaches. In parallel, fundamental research in data sciences and Artificial Intelligence (AI) has advanced tremendously, allowing the scientific community to generate a massive amount of knowledge from data. Advances …


Mapping Transcription Factor Networks And Elucidating Their Biological Determinants, Yiming Kang Jan 2021

Mapping Transcription Factor Networks And Elucidating Their Biological Determinants, Yiming Kang

McKelvey School of Engineering Theses & Dissertations

A central goal in systems biology is to accurately map the transcription factor (TF) network of a cell. Such a network map is a key component for many downstream applications, from developmental biology to transcriptome engineering, and from disease modeling to drug discovery. Building a reliable network map requires a wide range of data sources including TF binding locations and gene expression data after direct TF perturbations. However, we are facing two roadblocks. First, rich resources are available only for a few well-studied systems and cannot be easily replicated for new organisms or cell types. Second, when TF binding and …


Neural Network Supervised And Reinforcement Learning For Neurological, Diagnostic, And Modeling Problems, Donald Wunsch Iii Jan 2021

Neural Network Supervised And Reinforcement Learning For Neurological, Diagnostic, And Modeling Problems, Donald Wunsch Iii

Masters Theses

“As the medical world becomes increasingly intertwined with the tech sphere, machine learning on medical datasets and mathematical models becomes an attractive application. This research looks at the predictive capabilities of neural networks and other machine learning algorithms, and assesses the validity of several feature selection strategies to reduce the negative effects of high dataset dimensionality. Our results indicate that several feature selection methods can maintain high validation and test accuracy on classification tasks, with neural networks performing best, for both single class and multi-class classification applications. This research also evaluates a proof-of-concept application of a deep-Q-learning network (DQN) to …


Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri Jan 2021

Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri

Doctoral Dissertations

"With the advent of new chemicals and their increasing uses in every aspect of our life, considerable number of emerging contaminants are introduced to environment yearly. Emerging contaminants in forms of pharmaceuticals, detergents, biosolids, and reclaimed wastewater can cross plant roots and translocate to various parts of the plants. Long-term human exposure to emerging contaminants through food consumption is assumed to be a pathway of interest. Thus, uptake and translocation of emerging contaminants in plants are important for the assessment of health risks associated with human exposure to emerging contaminants. To have a better understanding over fate of emerging contaminants …


Machine Learning Applications For Drug Repurposing, Hansaim Lim Sep 2020

Machine Learning Applications For Drug Repurposing, Hansaim Lim

Dissertations, Theses, and Capstone Projects

The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected …


An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez Aug 2020

An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Large amounts of data is being generated constantly each day, so much data that it is difficult to find patterns in order to predict outcomes and make decisions for both humans and machines alike. It would be useful if this data could be simplified using machine learning techniques. For example, biological cell identity is dependent on many factors tied to genetic processes. Such factors include proteins, gene transcription, and gene methylation. Each of these factors are highly complex mechanism with immense amounts of data. Simplifying these can then be helpful in finding patterns in them. Error-Correcting Output Codes (ECOC) does …


Machine Learning With Digital Signal Processing For Rapid And Accurate Alignment-Free Genome Analysis: From Methodological Design To A Covid-19 Case Study, Gurjit Singh Randhawa Jun 2020

Machine Learning With Digital Signal Processing For Rapid And Accurate Alignment-Free Genome Analysis: From Methodological Design To A Covid-19 Case Study, Gurjit Singh Randhawa

Electronic Thesis and Dissertation Repository

In the field of bioinformatics, taxonomic classification is the scientific practice of identifying, naming, and grouping of organisms based on their similarities and differences. The problem of taxonomic classification is of immense importance considering that nearly 86% of existing species on Earth and 91% of marine species remain unclassified. Due to the magnitude of the datasets, the need exists for an approach and software tool that is scalable enough to handle large datasets and can be used for rapid sequence comparison and analysis. We propose ML-DSP, a stand-alone alignment-free software tool that uses Machine Learning and Digital Signal Processing to …


Enhancing Timeliness Of Drug Overdose Mortality Surveillance: A Machine Learning Approach, Patrick J. Ward, Peter J. Rock, Svetla Slavova, April M. Young, Terry L. Bunn, Ramakanth Kavuluru Oct 2019

Enhancing Timeliness Of Drug Overdose Mortality Surveillance: A Machine Learning Approach, Patrick J. Ward, Peter J. Rock, Svetla Slavova, April M. Young, Terry L. Bunn, Ramakanth Kavuluru

Kentucky Injury Prevention and Research Center Faculty Publications

BACKGROUND: Timely data is key to effective public health responses to epidemics. Drug overdose deaths are identified in surveillance systems through ICD-10 codes present on death certificates. ICD-10 coding takes time, but free-text information is available on death certificates prior to ICD-10 coding. The objective of this study was to develop a machine learning method to classify free-text death certificates as drug overdoses to provide faster drug overdose mortality surveillance.

METHODS: Using 2017–2018 Kentucky death certificate data, free-text fields were tokenized and features were created from these tokens using natural language processing (NLP). Word, bigram, and trigram features were created …


Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life Oct 2019

Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life

Mahurin Honors College Capstone Experience/Thesis Projects

According to the United Nations, the world population is expected to grow from its current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is also expected to increase by between 59% and 98% due to the population increase, accompanied by an increasing demand for protein due to a rising standard of living throughout developing countries. [1] Meeting this increase in required food production using present agricultural practices would necessitate a similar increase in farmland; a resource which does not exist in abundance. Therefore, in order to meet growing food demands, new methods will …


Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal Jan 2019

Relation Prediction Over Biomedical Knowledge Bases For Drug Repositioning, Mehmet Bakal

Theses and Dissertations--Computer Science

Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task …


Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie Nov 2018

Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie

Master of Science in Computer Science Theses

The evolution of machine learning and computer vision in technology has driven a lot of

improvements and innovation into several domains. We see it being applied for credit decisions, insurance quotes, malware detection, fraud detection, email composition, and any other area having enough information to allow the machine to learn patterns. Over the years the number of sensors, cameras, and cognitive pieces of equipment placed in the wilderness has been growing exponentially. However, the resources (human) to leverage these data into something meaningful are not improving at the same rate. For instance, a team of scientist volunteers took 8.4 years, …


Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu Apr 2018

Computational Modelling Of Human Transcriptional Regulation By An Information Theory-Based Approach, Ruipeng Lu

Electronic Thesis and Dissertation Repository

ChIP-seq experiments can identify the genome-wide binding site motifs of a transcription factor (TF) and determine its sequence specificity. Multiple algorithms were developed to derive TF binding site (TFBS) motifs from ChIP-seq data, including the entropy minimization-based Bipad that can derive both contiguous and bipartite motifs. Prior studies applying these algorithms to ChIP-seq data only analyzed a small number of top peaks with the highest signal strengths, biasing their resultant position weight matrices (PWMs) towards consensus-like, strong binding sites; nor did they derive bipartite motifs, disabling the accurate modelling of binding behavior of dimeric TFs.

This thesis presents a novel …


Scalable Feature Selection And Extraction With Applications In Kinase Polypharmacology, Derek Jones Jan 2018

Scalable Feature Selection And Extraction With Applications In Kinase Polypharmacology, Derek Jones

Theses and Dissertations--Computer Science

In order to reduce the time associated with and the costs of drug discovery, machine learning is being used to automate much of the work in this process. However the size and complex nature of molecular data makes the application of machine learning especially challenging. Much work must go into the process of engineering features that are then used to train machine learning models, costing considerable amounts of time and requiring the knowledge of domain experts to be most effective. The purpose of this work is to demonstrate data driven approaches to perform the feature selection and extraction steps in …


Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery Jan 2018

Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery

Doctoral Dissertations

"The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for …


Knowledge Driven Approaches And Machine Learning Improve The Identification Of Clinically Relevant Somatic Mutations In Cancer Genomics, Benjamin John Ainscough Dec 2017

Knowledge Driven Approaches And Machine Learning Improve The Identification Of Clinically Relevant Somatic Mutations In Cancer Genomics, Benjamin John Ainscough

Arts & Sciences Electronic Theses and Dissertations

For cancer genomics to fully expand its utility from research discovery to clinical adoption, somatic variant detection pipelines must be optimized and standardized to ensure identification of clinically relevant mutations and to reduce laborious and error-prone post-processing steps. To address the need for improved catalogues of clinically and biologically important somatic mutations, we developed DoCM, a Database of Curated Mutations in Cancer (http://docm.info), as described in Chapter 2. DoCM is an open source, openly licensed resource to enable the cancer research community to aggregate, store and track biologically and clinically important cancer variants. DoCM is currently comprised of 1,364 variants …


Predicting Mental Conditions Based On "History Of Present Illness" In Psychiatric Notes With Deep Neural Networks, Tung Tran, Ramakanth Kavuluru Nov 2017

Predicting Mental Conditions Based On "History Of Present Illness" In Psychiatric Notes With Deep Neural Networks, Tung Tran, Ramakanth Kavuluru

Computer Science Faculty Publications

Background—Applications of natural language processing to mental health notes are not common given the sensitive nature of the associated narratives. The CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing (NLP) changed this scenario by providing the first set of neuropsychiatric notes to participants. This study summarizes our efforts and results in proposing a novel data use case for this dataset as part of the third track in this shared task.

Objective—We explore the feasibility and effectiveness of predicting a set of common mental conditions a patient has based on the short textual description of patient’s history …


Machine Learning Based Protein Sequence To (Un)Structure Mapping And Interaction Prediction, Sumaiya Iqbal Aug 2017

Machine Learning Based Protein Sequence To (Un)Structure Mapping And Interaction Prediction, Sumaiya Iqbal

University of New Orleans Theses and Dissertations

Proteins are the fundamental macromolecules within a cell that carry out most of the biological functions. The computational study of protein structure and its functions, using machine learning and data analytics, is elemental in advancing the life-science research due to the fast-growing biological data and the extensive complexities involved in their analyses towards discovering meaningful insights. Mapping of protein’s primary sequence is not only limited to its structure, we extend that to its disordered component known as Intrinsically Disordered Proteins or Regions in proteins (IDPs/IDRs), and hence the involved dynamics, which help us explain complex interaction within a cell that …


Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …